ANALYTICAL ESTIMATES OF TURBULENT MHD TRANSPORT COEFFICIENTS

Turbulent transfer rates from small-scale MHD excitations to large-scale Fourier modes are calculated algebraically, using the method of Biskamp and Welter. Three cases are considered: two-dimensional Navier-Stokes flows, two-dimensional incompressible MHD, and the weakly three-dimensional Strauss equations. In all cases, an initially large spectral gap between the small-scale and large-scale excitations is assumed, and attention focusses on the initial values of the back-transfer rates. The sign of the transfer is determined by the sign of an analytically calculable eddy viscosity and/or anomalous resistivity. We are able to confirm the results of Biskamp and Welter for the case of two-dimensional MHD, but find some differences for the case of the Strauss equations. It is argued that the Strauss equations may not exhibit an inverse cascade phenomenon for the spatially periodic case unless their initial spectra are such that the behavior is essentially that of two-dimensional MHD.

[1]  W. Matthaeus,et al.  Long-time states of inverse cascades in the presence of a maximum length scale , 1983, Journal of Plasma Physics.

[2]  D. Biskamp,et al.  Negative Anomalous Resistivity - A Mechanism of the Major Disruption in Tokamaks , 1983 .

[3]  U. Frisch,et al.  Helical and Nonhelical Turbulent Dynamos , 1981 .

[4]  Stanislav Boldyrev,et al.  Two-dimensional turbulence , 1980 .

[5]  D. Fyfe,et al.  Possible inverse cascade behavior for drift-wave turbulence. [in plasma] , 1979 .

[6]  A. Pouquet On two-dimensional magnetohydrodynamic turbulence , 1978, Journal of Fluid Mechanics.

[7]  H. K. Moffatt Magnetic Field Generation in Electrically Conducting Fluids , 1978 .

[8]  A. Hasegawa,et al.  Stationary spectrum of strong turbulence in magnetized nonuniform plasma , 1977 .

[9]  D. Fyfe,et al.  Dissipative, forced turbulence in two-dimensional magnetohydrodynamics , 1977, Journal of Plasma Physics.

[10]  D. Fyfe,et al.  Magnetic dynamo action in two-dimensional turbulent magneto-hydrodynamics , 1977, Journal of Plasma Physics.

[11]  U. Frisch,et al.  Strong MHD helical turbulence and the nonlinear dynamo effect , 1976, Journal of Fluid Mechanics.

[12]  R. Kraichnan Eddy Viscosity in Two and Three Dimensions , 1976 .

[13]  D. Fyfe,et al.  High-beta turbulence in two-dimensional magnetohydrodynamics , 1975, Journal of Plasma Physics.

[14]  P. Rhines Waves and turbulence on a beta-plane , 1975, Journal of Fluid Mechanics.

[15]  Uriel Frisch,et al.  Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence , 1975, Journal of Fluid Mechanics.

[16]  C. Leith Diffusion Approximation for Two‐Dimensional Turbulence , 1968 .

[17]  R. Kraichnan Inertial Ranges in Two‐Dimensional Turbulence , 1967 .

[18]  M. Steenbeck,et al.  Berechnung der mittleren Lorentz-Feldstärke für ein elektrisch leitendes Medium in turbulenter, durch Coriolis-Kräfte beeinflußter Bewegung , 1966 .

[19]  Ragnar Fjørtoft,et al.  On the Changes in the Spectral Distribution of Kinetic Energy for Twodimensional, Nondivergent Flow , 1953 .

[20]  D. Biskamp Anomalous resistivity and viscosity due to small-scale magnetic turbulence , 1984 .

[21]  D. Montgomery Major disruptions, inverse cascades, and the Strauss equations. [Current-carrying plasmas] , 1982 .

[22]  A. Hasegawa,et al.  Pseudo-three-dimensional turbulence in magnetized nonuniform plasma , 1978 .

[23]  H. K. Mo Att,et al.  Magnetic field generation in electrically conducting fluids , 1978 .

[24]  H. R. Strauss,et al.  Nonlinear, three‐dimensional magnetohydrodynamics of noncircular tokamaks , 1976 .

[25]  V. Starr Physics of Negative Viscosity Phenomena , 1968 .

[26]  L. Onsager,et al.  Statistical hydrodynamics , 1949 .