Temperature control in thermal microactuators with applications to in-situ nanomechanical testing

Thermal microactuators are used in many micro/nano-technologies. To circumvent undesired heating of the end effector, heat sink beams are co-fabricated with the thermal actuator and connected to the substrate. This paper reports a combined experimental and modeling study on the effect of such heat sink beams. Temperature distribution is measured and simulated using Raman scattering and multiphysics finite element method, respectively. Our results show that heat sink beams are effective in controlling the temperature of the thermal actuator. Insights on how to achieve both low temperature and large actuator displacement for in-situ mechanical testing of nanoscale specimens are provided.

[1]  Michael S. Baker,et al.  Demonstration of an in situ on-chip tensile tester , 2009 .

[2]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[3]  J. Michler,et al.  Brittle‐to‐Ductile Transition in Uniaxial Compression of Silicon Pillars at Room Temperature , 2009 .

[4]  Timothy W. McLain,et al.  Modeling the thermal behavior of a surface-micromachined linear-displacement thermomechanical microactuator , 2002 .

[5]  Lijie Li,et al.  Dynamic response modelling and characterization of a vertical electrothermal actuator , 2009 .

[6]  Yong Zhu,et al.  An electrothermal microactuator with Z-shaped beams , 2010 .

[7]  Yong Zhu,et al.  Z-Shaped MEMS Thermal Actuators: Piezoresistive Self-Sensing and Preliminary Results for Feedback Control , 2012, Journal of Microelectromechanical Systems.

[8]  L. Howell,et al.  On-chip actuation of an in-plane compliant bistable micromechanism , 2002 .

[9]  Y. Gianchandani,et al.  Bent-beam electrothermal actuators-Part I: Single beam and cascaded devices , 2001 .

[10]  David C. Miller,et al.  Dependence on diameter and growth direction of apparent strain to failure of Si nanowires , 2011 .

[11]  Horacio Dante Espinosa,et al.  Experimental Techniques for the Mechanical Characterization of One-Dimensional Nanostructures , 2007 .

[12]  Don L. DeVoe,et al.  Large-force electrothermal linear micromotors , 2004 .

[13]  Alberto Corigliano,et al.  On-Chip Mechanical Characterization using an Electro-thermo-mechanical Actuator , 2010 .

[14]  Samuel Graham,et al.  MEMS-Based Nanomechanics: Influence of MEMS Design on Test Temperature , 2011, Experimental Mechanics.

[15]  Neville K. S. Lee,et al.  Analysis and design of polysilicon thermal flexure actuator , 1999 .

[16]  L. L. Chu,et al.  Bent-beam electrothermal actuators-Part II: Linear and rotary microengines , 2001 .

[17]  Horacio D Espinosa,et al.  An electromechanical material testing system for in situ electron microscopy and applications. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Horacio Dante Espinosa,et al.  A microelectromechanical load sensor for in situ electron and x-ray microscopy tensile testing of nanostructures , 2005 .

[19]  M. Saif,et al.  In Situ Study of Size and Temperature Dependent Brittle‐to‐Ductile Transition in Single Crystal Silicon , 2013 .

[20]  H. Espinosa,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering a Thermal Actuator for Nanoscale in Situ Microscopy Testing: Design and Characterization , 2022 .

[21]  Wei Lu,et al.  Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. , 2009, Nano letters.

[22]  A. Geisberger,et al.  Electrothermal properties and modeling of polysilicon microthermal actuators , 2003 .

[23]  S. Kearney,et al.  Spatially resolved temperature mapping of electrothermal actuators by surface Raman scattering , 2005, Journal of Microelectromechanical Systems.

[24]  Norman A. Fleck,et al.  Comparison of microtweezers based on three lateral thermal actuator configurations , 2005 .