Are most of the stationary points in a molecular association minima? Application of Fraga's potential to benzene–benzene

The importance of characterizing the stationary points of the intermolecular potential by means of Hessian eigenvalues is illustrated for the calculation of the benzene–benzene interaction using an atom‐to‐atom pair potential proposed by Fraga (FAAP). Two models, the standard one‐center‐per atom and another using three‐centers‐per atom due to Hunter and Sanders, are used to evaluate the electrostatic contributions and the results are compared. It is found in both cases that although using low‐gradient thresholds allows optimization procedures to avoid many stationary points that are not true minima computing time considerations makes the usual procedure of using high‐gradient thresholds [say, 10−2 kj/(mol Å)] as the most efficient. Moreover, this later procedure can be recommended because the actual minima can be characterized by means of Hessian eigenvalues even if these high‐gradient thresholds are used, and further decreasing of the convergence criterion does not imply significant modifications in the geometric parameters of the minima. The possible advantages of using the three‐centers‐per‐atom model for the calculation of molecular associations between delocalized systems are also discussed on the basis of the agreement of the benzene–benzene results with experimental and theoretical data taken from the literature. © 1993 John Wiley & Sons, Inc.

[1]  Everly B. Fleischer,et al.  Crystal Structure of Porphine , 1965 .

[2]  Edward W. Schlag,et al.  Multiphoton mass spectrometry of clusters: dissociation kinetics of the benzene cluster ions , 1988 .

[3]  Sarah L. Price,et al.  The electrostatic interactions in van der Waals complexes involving aromatic molecules , 1987 .

[4]  C. Haynam,et al.  Dimers in jet‐cooled s‐tetrazine vapor: Structure and electronic spectra , 1983 .

[5]  P. Fowler,et al.  Central or distributed multipole moments? Electrostatic models of aromatic dimers , 1991 .

[6]  P. Claverie,et al.  Interactions between nucleic acid bases in hydrogen bonded and stacked configurations: The role of the molecular charge distribution , 1981 .

[7]  D. Wales,et al.  When do gradient optimisations converge to saddle points , 1992 .

[8]  Friedrich Huisken,et al.  CO2‐laser induced photodissociation studies of size‐selected small benzene clusters , 1990 .

[9]  E. W. Schlag,et al.  Ab initio Calculations on the Structure of the Benzene Dimer , 1988 .

[10]  Christopher A. Hunter,et al.  The nature of .pi.-.pi. interactions , 1990 .

[11]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[12]  F. Torrens,et al.  The use of “ab initio” net charges to improve Fraga's atom-atom pair potential for molecular association , 1988 .

[13]  E. Clementi,et al.  Analytical potentials from "ab initio" computations for the interaction between biomolecules. 1. Water with amino acids. , 1977, Journal of the American Chemical Society.

[14]  G. Scoles,et al.  Intermolecular forces via hybrid Hartree–Fock–SCF plus damped dispersion (HFD) energy calculations. An improved spherical model , 1982 .

[15]  E. W. Schlag,et al.  Spectra of isotopically mixed benzene dimers: Details on the interaction in the vdW bond , 1986 .

[16]  Masao Kimura,et al.  Molecular structure of benzene , 1976 .

[17]  J. Pawliszyn,et al.  Interactions between aromatic systems: dimers of benzene and s-tetrazine , 1984 .

[18]  F. Torrens,et al.  Molecular aggregation of polycyclic aromatic hydrocarbons. A theoretical modelling of coronene aggregation , 1992 .

[19]  M. Schauer,et al.  Calculations of the geometry and binding energy of aromatic dimers: Benzene, toluene, and toluene–benzene , 1985 .

[20]  E. Clementi,et al.  Analytical potentials from "ab initio" computations for the interaction between biomolecules. 2. Water with the bases of DNA. , 1977, Journal of the American Chemical Society.

[21]  E. Ortí,et al.  Study of a medium‐size biological molecular association by means of a pair potential semiempirical approach: β‐carboline–lumiflavin , 1985 .

[22]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[23]  Mark Schauer,et al.  Dimers of aromatic molecules: (Benzene)2, (toluene)2, and benzene–toluene , 1984 .

[24]  R. Zahradník,et al.  An essay on the theory and calculations of intermolecular interactions , 1992 .

[25]  Patrick W. Fowler,et al.  Theoretical studies of van der Waals molecules and intermolecular forces , 1988 .

[26]  E. Ortí,et al.  Molecular associations between lumiflavine and some β-carbolines , 1985 .

[27]  Serafin Fraga,et al.  A semiempirical formulation for the study of molecular interactions , 1982 .

[28]  William Klemperer,et al.  Molecular beam studies of benzene dimer, hexafluorobenzene dimer, and benzene–hexafluorobenzene , 1979 .

[29]  E. Ortí,et al.  Incorporation of a dispersion energy term to Fraga's atom-atom pair intermolecular potential. Application to benzene, s-tetrazine, and their mixed dimers , 1987 .

[30]  Floppy structure of the benzene dimer: Ab initio calculation on the structure and dipole moment , 1990 .

[31]  M. Zerner,et al.  A Broyden—Fletcher—Goldfarb—Shanno optimization procedure for molecular geometries , 1985 .

[32]  G. Bauer,et al.  Parameterization of site-site potentials in the spherical expansion formalism A point charge model for the electrostatic interaction of the aza-benzene molecules , 1982 .

[33]  E. Ortí,et al.  Pair potential calculation of molecular associations: a vectorized version , 1991 .

[34]  F. Mulder,et al.  Long range C, N and H atom-atom potential parameters from ab initio dispersion energies for different azabenzene dimers , 1979 .