Mining Classification Rules from Multidimensional Structured Databases

[1]  Roberto J. Bayardo,et al.  Efficiently mining long patterns from databases , 1998, SIGMOD '98.

[2]  Takashi Washio,et al.  Constructing Decision Trees for Graph-Structured Data by Chunkingless Graph-Based Induction , 2006, PAKDD.

[3]  Ashwin Srinivasan,et al.  Relating chemical activity to structure: An examination of ILP successes , 1995, New Generation Computing.

[4]  Jiawei Han,et al.  BIDE: efficient mining of frequent closed sequences , 2004, Proceedings. 20th International Conference on Data Engineering.

[5]  Qiming Chen,et al.  PrefixSpan,: mining sequential patterns efficiently by prefix-projected pattern growth , 2001, Proceedings 17th International Conference on Data Engineering.

[6]  Peter A. Flach,et al.  Comparative Evaluation of Approaches to Propositionalization , 2003, ILP.

[7]  Hiroki Arimura,et al.  Optimized Substructure Discovery for Semi-structured Data , 2002, PKDD.

[8]  Shinichi Morishita,et al.  Transversing itemset lattices with statistical metric pruning , 2000, PODS '00.

[9]  Nicolas Pasquier,et al.  Discovering Frequent Closed Itemsets for Association Rules , 1999, ICDT.

[10]  Wynne Hsu,et al.  Integrating Classification and Association Rule Mining , 1998, KDD.

[11]  Hiroki Arimura,et al.  Discovering Frequent Substructures in Large Unordered Trees , 2003, Discovery Science.

[12]  Yun Chi,et al.  Mining Closed and Maximal Frequent Subtrees from Databases of Labeled Rooted Trees , 2005, IEEE Trans. Knowl. Data Eng..

[13]  Hiroshi Motoda,et al.  Constructing a Decision Tree for Graph-Structured Data and its Applications , 2004, Fundam. Informaticae.

[14]  Carolina Ruiz,et al.  Mining Expressive Temporal Associations from Complex Data , 2005, MLDM.

[15]  Thomas Gärtner,et al.  Kernels and Distances for Structured Data , 2004, Machine Learning.

[16]  Hiroki Arimura,et al.  Efficient Substructure Discovery from Large Semi-Structured Data , 2001, IEICE Trans. Inf. Syst..

[17]  Hisashi Kashima,et al.  Kernel-based discriminative learning algorithms for labeling sequences, trees, and graphs , 2004, ICML '04.

[18]  Jiawei Han,et al.  CloseGraph: mining closed frequent graph patterns , 2003, KDD '03.

[19]  Luc De Raedt,et al.  CorClass: Correlated Association Rule Mining for Classification , 2004, Discovery Science.

[20]  Peter Clark,et al.  The CN2 Induction Algorithm , 1989, Machine Learning.

[21]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[22]  Shinichi Morishita,et al.  Answering the Most Correlated N Association Rules Efficiently , 2002, PKDD.

[23]  Gerd Stumme,et al.  Mining frequent patterns with counting inference , 2000, SKDD.

[24]  Albrecht Zimmermann,et al.  CTC - correlating tree patterns for classification , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[25]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[26]  Yun Chi,et al.  Frequent Subtree Mining - An Overview , 2004, Fundam. Informaticae.

[27]  Hendrik Blockeel,et al.  Top-Down Induction of First Order Logical Decision Trees , 1998, AI Commun..

[28]  William W. Cohen Fast Effective Rule Induction , 1995, ICML.

[29]  Albrecht Zimmermann,et al.  Tree2 - Decision Trees for Tree Structured Data , 2005, LWA.