Consistency of ℓ1-regularized maximum-likelihood for compressive Poisson regression

We consider Poisson regression with the canonical link function. This regression model is widely used in regression analysis involving count data; one important application in electrical engineering is transmission tomography. In this paper, we establish the variable selection consistency and estimation consistency of the ℓ1-regularized maximum-likelihood estimator in this regression model, and characterize the asymptotic sample complexity that ensures consistency even under the compressive sensing setting (or the n ≪ p setting in high-dimensional statistics).

[1]  P. Massart,et al.  Concentration inequalities and model selection , 2007 .

[2]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[3]  Eberhard Zeidler,et al.  Applied Functional Analysis: Main Principles and Their Applications , 1995 .

[4]  Martin J. Wainwright,et al.  A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.

[5]  慧 廣瀬 A Mathematical Introduction to Compressive Sensing , 2015 .

[6]  J. Fessler Statistical Image Reconstruction Methods for Transmission Tomography , 2000 .

[7]  Volkan Cevher,et al.  Composite Convex Minimization Involving Self-concordant-Like Cost Functions , 2015, MCO.

[8]  Avraham Adler,et al.  Lambert-W Function , 2015 .

[9]  Volkan Cevher,et al.  Sparsistency of 1-Regularized M-Estimators , 2015, AISTATS.

[10]  Xin Jiang,et al.  Minimax Optimal Rates for Poisson Inverse Problems With Physical Constraints , 2014, IEEE Transactions on Information Theory.

[11]  Piotr Indyk,et al.  Sparse Recovery Using Sparse Matrices , 2010, Proceedings of the IEEE.

[12]  Francis R. Bach,et al.  Self-concordant analysis for logistic regression , 2009, ArXiv.

[13]  J. T. Wulu,et al.  Regression analysis of count data , 2002 .

[14]  B. Efron The Estimation of Prediction Error , 2004 .

[15]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[16]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[17]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[18]  Venkatesh Saligrama,et al.  Sparse signal recovery under poisson statistics for online marketing applications , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[19]  Sylvain Arlot,et al.  A survey of cross-validation procedures for model selection , 2009, 0907.4728.

[20]  J. H. Schuenemeyer,et al.  Generalized Linear Models (2nd ed.) , 1992 .

[21]  J. Lafferty,et al.  High-dimensional Ising model selection using ℓ1-regularized logistic regression , 2010, 1010.0311.

[22]  S. Stewart ON CERTAIN INEQUALITIES INVOLVING THE LAMBERT W FUNCTION , 2009 .

[23]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[24]  P. Bickel,et al.  SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.

[25]  S. Geer,et al.  Regularization in statistics , 2006 .

[26]  Peng Zhao,et al.  On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..

[27]  Roummel F. Marcia,et al.  Compressed Sensing Performance Bounds Under Poisson Noise , 2009, IEEE Transactions on Signal Processing.

[28]  Jianqing Fan,et al.  Nonconcave penalized likelihood with a diverging number of parameters , 2004, math/0406466.

[29]  Martin J. Wainwright,et al.  Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using $\ell _{1}$ -Constrained Quadratic Programming (Lasso) , 2009, IEEE Transactions on Information Theory.

[30]  Jianqing Fan,et al.  Nonconcave Penalized Likelihood With NP-Dimensionality , 2009, IEEE Transactions on Information Theory.

[31]  Bin Yu,et al.  High-dimensional covariance estimation by minimizing ℓ1-penalized log-determinant divergence , 2008, 0811.3628.

[32]  Venkatesh Saligrama,et al.  Sparse signal recovery under Poisson statistics , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).