Structure, thermal stability and chromaticity investigation of TiB2 based high temperature solar selective absorbing coatings

[1]  H. Barshilia,et al.  Hafnium carbide based solar absorber coatings with high spectral selectivity , 2018, Solar Energy Materials and Solar Cells.

[2]  Sang-Bok Lee,et al.  Highly improved oxidation resistance of TiC–SKD11 composite by SiC/TiB2 based hybrid coating , 2018, Applied Surface Science.

[3]  Yiguang Wang,et al.  Mechanical properties of ZrB2–SiC ceramics prepared by polymeric precursor route , 2018 .

[4]  M. Nasseri Comparison of HfB2 and ZrB2 behaviors for using in nuclear industry , 2018 .

[5]  Lei Wang,et al.  The investigation of thermal stability of Al/NbMoN/NbMoON/SiO 2 solar selective absorbing coating , 2017 .

[6]  E. Sani,et al.  Titanium diboride ceramics for solar thermal absorbers , 2017, 1803.06526.

[7]  F. Zhuge,et al.  High-temperature tolerance in WTi-Al2O3 cermet-based solar selective absorbing coatings with low thermal emissivity , 2017 .

[8]  Aiqin Wang,et al.  Enhanced thermal stability and spectral selectivity of SS/TiC-Y/Al2O3 spectrally selective solar absorber by thermal annealing , 2016 .

[9]  P. Ma,et al.  Structure, optical properties and thermal stability of TiC-based tandem spectrally selective solar absorber coating , 2016 .

[10]  James Loomis,et al.  Concentrating solar thermoelectric generators with a peak efficiency of 7.4% , 2016, Nature Energy.

[11]  E. Sani,et al.  Optical properties of dense zirconium and tantalum diborides for solar thermal absorbers , 2016, 1803.06528.

[12]  M. Mitrić,et al.  Intermixing and phase transformations in Al/Ti multilayer system induced by picosecond laser beam , 2015 .

[13]  Harish C. Barshilia,et al.  Design and fabrication of spectrally selective TiAlC/TiAlCN/TiAlSiCN/TiAlSiCO/TiAlSiO tandem absorber for high-temperature solar thermal power applications , 2015 .

[14]  J. Ouyang,et al.  The spectral selective absorbing characteristics and thermal stability of SS/TiAlN/TiAlSiN/Si3N4 tandem absorber prepared by magnetron sputtering , 2015 .

[15]  R. Kundu,et al.  Structural and optical properties of barium titanate modified bismuth borate glasses , 2014 .

[16]  Gang Xu,et al.  Microstructure, optical properties and thermal stability of ZrB 2 and Zr–B–N thin films as high-temperature solar selective absorbers , 2014 .

[17]  V. Sathe,et al.  Thermal, mechanical and Raman studies on mixed alkali borotungstate glasses , 2014 .

[18]  S. B. Krupanidhi,et al.  Carbon Nanotube‐Based Tandem Absorber with Tunable Spectral Selectivity: Transition from Near‐Perfect Blackbody Absorber to Solar Selective Absorber , 2014, Advanced materials.

[19]  Shrikant V. Joshi,et al.  Functional multi-layer nitride coatings for high temperature solar selective applications , 2014 .

[20]  Limei Lin,et al.  Colored solar selective absorbing coatings with metal Ti and dielectric AlN multilayer structure , 2013 .

[21]  H. Barshilia,et al.  Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications , 2012 .

[22]  Ľ. Bača,et al.  Adapting of sol–gel process for preparation of TiB2 powder from low-cost precursors , 2008 .

[23]  Jun Chen,et al.  UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. , 2006, The journal of physical chemistry. B.