Conditional uncertainty principle

We develop a general operational framework that formalizes the concept of conditional uncertainty in a measure-independent fashion. Our formalism is built upon a mathematical relation which we call conditional majorization. We define conditional majorization and, for the case of classical memory, we provide its thorough characterization in terms of monotones, i.e., functions that preserve the partial order under conditional majorization. We demonstrate the application of this framework by deriving two types of memory-assisted uncertainty relations: (1) a monotone-based conditional uncertainty relation, (2) a universal measure-independent conditional uncertainty relation, both of which set a lower bound on the minimal uncertainty that Bob has about Alice's pair of incompatible measurements, conditioned on arbitrary measurement that Bob makes on his own system. We next compare the obtained relations with their existing entropic counterparts and find that they are at least independent.

[1]  W. Beckner Inequalities in Fourier analysis , 1975 .

[2]  G. Gour,et al.  The principle behind the Uncertainty Principle , 2015 .

[3]  S. Wehner,et al.  The Uncertainty Principle Determines the Nonlocality of Quantum Mechanics , 2010, Science.

[4]  M. Horodecki,et al.  Locking classical correlations in quantum States. , 2003, Physical review letters.

[5]  Patrick J. Coles,et al.  Entropic uncertainty relations and their applications , 2015, 1511.04857.

[6]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[7]  Lukasz Rudnicki,et al.  Majorization entropic uncertainty relations , 2013, ArXiv.

[8]  Marco Tomamichel,et al.  Tight finite-key analysis for quantum cryptography , 2011, Nature Communications.

[9]  Gilad Gour,et al.  Uncertainty, joint uncertainty, and the quantum uncertainty principle , 2015 .

[10]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[11]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[12]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[13]  J. Boileau,et al.  Conjectured strong complementary information tradeoff. , 2008, Physical review letters.

[14]  I. Damgård,et al.  Cryptography in the Bounded Quantum Storage Model , 2005 .

[15]  Christine Silberhorn,et al.  Continuous‐variable quantum information processing , 2010, 1008.3468.

[16]  D. Deutsch Uncertainty in Quantum Measurements , 1983 .

[17]  Shengjun Wu,et al.  Entropic uncertainty relation for mutually unbiased bases , 2008, 0811.2298.

[18]  I. D. Ivanović An inequality for the sum of entropies of unbiased quantum measurements , 1992 .

[19]  Patrick J. Coles,et al.  Information-theoretic treatment of tripartite systems and quantum channels , 2010, 1006.4859.

[20]  Patrick J. Coles,et al.  Entanglement-assisted guessing of complementary measurement outcomes , 2014 .

[21]  Kraus Complementary observables and uncertainty relations. , 1987, Physical review. D, Particles and fields.

[22]  H. P. Robertson The Uncertainty Principle , 1929 .

[23]  Lukasz Rudnicki,et al.  Majorization approach to entropic uncertainty relations for coarse-grained observables , 2015, 1503.03682.

[24]  R. Renner,et al.  Uncertainty relation for smooth entropies. , 2010, Physical review letters.

[25]  Jorge Sánchez,et al.  Entropic uncertainty and certainty relations for complementary observables , 1993 .

[26]  S. Wehner,et al.  Entropic uncertainty relations and locking: tight bounds for mutually unbiased bases , 2006, quant-ph/0606244.

[27]  S. Friedland,et al.  Universal uncertainty relations. , 2013, Physical review letters.

[28]  I. Bialynicki-Birula,et al.  Uncertainty relations for information entropy in wave mechanics , 1975 .

[29]  I. Hirschman,et al.  A Note on Entropy , 1957 .

[30]  M. Partovi Majorization formulation of uncertainty in quantum mechanics , 2010, 1012.3481.

[31]  A. Winter,et al.  Entropic uncertainty relations—a survey , 2009, 0907.3704.

[32]  Masato Koashi,et al.  Simple security proof of quantum key distribution based on complementarity , 2009 .

[33]  Patrick J. Coles,et al.  Improved entropic uncertainty relations and information exclusion relations , 2013, 1307.4265.

[34]  O. Gühne Characterizing entanglement via uncertainty relations. , 2003, Physical review letters.

[35]  Hall,et al.  Information Exclusion Principle for Complementary Observables. , 1995, Physical review letters.

[36]  K. Życzkowski,et al.  Strong majorization entropic uncertainty relations , 2014, 1402.0129.

[37]  G. Guo,et al.  Experimental investigation of the entanglement-assisted entropic uncertainty principle , 2010, 1012.0361.

[38]  Patrick J. Coles,et al.  Uncertainty relations from simple entropic properties. , 2011, Physical review letters.

[39]  M. Koashi Simple security proof of quantum key distribution via uncertainty principle , 2005, quant-ph/0505108.

[40]  S. Wehner,et al.  Entropic uncertainty from effective anticommutators , 2014, 1402.5722.