Electron spin relaxation times of phosphorus donors in silicon

Donor electron spins in phosphorus-doped silicon (Si:P) are a candidate two-level system (qubit) for quantum information processing. Spin echo measurements of isotopically purified ${}^{28}\mathrm{S}\mathrm{i}:\mathrm{P}$ are presented that show exceptionally long transverse relaxation (decoherence) times, ${T}_{2},$ at low temperature. Below $\ensuremath{\sim}10\mathrm{K}$ the spin decoherence is shown to be controlled by instantaneous diffusion and at higher temperatures by an Orbach process. ${T}_{2}$ for small pulse turning angles is 14 ms at 7 K and extrapolates to $\ensuremath{\sim}60\mathrm{ms}$ for an isolated spin, over 2 orders of magnitude longer than previously demonstrated.

[1]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[2]  Eli Yablonovitch,et al.  Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures , 1999, quant-ph/9905096.

[3]  Timothy F. Havel,et al.  NMR Based Quantum Information Processing: Achievements and Prospects , 2000, quant-ph/0004104.

[4]  R. Orbach On the Theory of Spin-Lattice Relaxation in Paramagnetic Salts , 1961 .

[5]  T. Castner Direct Measurement of the Valley-Orbit Splitting of Shallow Donors in Silicon , 1962 .

[6]  Philip W. Anderson,et al.  Spectral Diffusion Decay in Spin Resonance Experiments , 1962 .

[7]  K. Salikhov,et al.  The theory of electron spin-echo signal decay resulting from dipole-dipole interactions between paramagnetic centers in solids , 1981 .

[8]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[9]  Akira Hirai,et al.  Electron Spin Echo Decay Behaviours of Phosphorus Doped Silicon , 1972 .

[10]  Wolfgang Harneit,et al.  Fullerene-based electron-spin quantum computer , 2002 .

[11]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[12]  G. Feher,et al.  Electron Spin Resonance Experiments on Donors in Silicon. I. Electronic Structure of Donors by the Electron Nuclear Double Resonance Technique , 1959 .

[13]  A. Abragam,et al.  Electron paramagnetic resonance of transition ions , 1970 .

[14]  E. A. Gere,et al.  Electron Spin Resonance Experiments on Donors in Silicon. II. Electron Spin Relaxation Effects , 1959 .

[15]  Mark A. Eriksson,et al.  Practical design and simulation of silicon-based quantum-dot qubits , 2003 .

[16]  W. Mims,et al.  Phase Memory in Electron Spin Echoes, Lattice Relaxation Effects in CaW O 4 : Er, Ce, Mn , 1968 .

[17]  J. P. Gordon,et al.  Microwave Spin Echoes from Donor Electrons in Silicon , 1958 .

[18]  S. Das Sarma,et al.  Electron spin coherence in semiconductors: Considerations for a spin-based solid-state quantum computer architecture , 2002, cond-mat/0203101.

[19]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[20]  D. Lepine,et al.  Spin Resonance of Localized and Delocalized Electrons in Phosphorus-Doped Silicon between 20 and 30 °K , 1970 .