Remnants of a Middle Triassic island arc on western margin of South China Block: Evidence for bipolar subduction of the Paleotethyan Ailaoshan Ocean

[1]  Chao Huang,et al.  Subduction polarity of the Ailaoshan Ocean (eastern Paleotethys): Constraints from detrital zircon U-Pb and Hf-O isotopes for the Longtan Formation , 2020, GSA Bulletin.

[2]  Chao Huang,et al.  When Did the Paleotethys Ailaoshan Ocean Close: New Insights From Detrital Zircon U‐Pb age and Hf Isotopes , 2019, Tectonics.

[3]  X. Xia,et al.  First Identification of Late Permian Nb‐Enriched Basalts in Ailaoshan Region (SW Yunnan, China): Contribution From Emeishan Plume to Subduction of Eastern Paleotethys , 2019, Geophysical Research Letters.

[4]  Fang Wang,et al.  Mineral phase equilibria and zircon geochronology constrain multiple metamorphic events of high‐pressure pelitic granulites in south‐eastern Tibetan Plateau , 2019, Geological Journal.

[5]  Chao Huang,et al.  Changes of provenance of Permian and Triassic sedimentary rocks from the Ailaoshan suture zone (SW China) with implications for the closure of the eastern Paleotethys , 2019, Journal of Asian Earth Sciences.

[6]  Huichuan Liu,et al.  Break-away of South China from Gondwana: Insights from the Silurian high-Nb basalts and associated magmatic rocks in the Diancangshan-Ailaoshan fold belt (SW China) , 2018, Lithos.

[7]  Van Vuong Nguyen,et al.  Early Paleozoic or Early-Middle Triassic collision between the South China and Indochina Blocks: The controversy resolved? Structural insights from the Kon Tum massif (Central Vietnam) , 2018, Journal of Asian Earth Sciences.

[8]  Weihong He,et al.  Radiolarian and Detrital Zircon in the Upper Carboniferous to Permian Bancheng Formation, Qinfang Basin, and the Geological Significance , 2018, Journal of Earth Science.

[9]  Q. Qian,et al.  Formation of Late Archean High‐&dgr;18O Diorites through Partial Melting of Hydrated Metabasalts , 2018 .

[10]  Peter A. Cawood,et al.  Closure of the East Paleotethyan Ocean and amalgamation of the Eastern Cimmerian and Southeast Asia continental fragments , 2017, Earth-Science Reviews.

[11]  Huichuan Liu,et al.  Petrogenesis of the Dalongkai ultramafic-mafic intrusion and its tectonic implication for the Paleotethyan evolution along the Ailaoshan tectonic zone (SW China) , 2017 .

[12]  Yigang Xu,et al.  The provenance of late Permian karstic bauxite deposits in SW China, constrained by the geochemistry of interbedded clastic rocks, and U–Pb–Hf–O isotopes of detrital zircons , 2017 .

[13]  V. Gardien,et al.  Collision vs. subduction-related magmatism: two contrasting ways of granite formation and implications for crustal growth , 2017 .

[14]  Y. Wang,et al.  Midcrustal shearing and doming in a Cenozoic compressive setting along the Ailao Shan‐Red River shear zone , 2017 .

[15]  W. Fan,et al.  Late Triassic post-collisional slab break-off along the Ailaoshan suture: insights from OIB-like amphibolites and associated felsic rocks , 2017, International Journal of Earth Sciences.

[16]  Wenbin Wu,et al.  Zircon U–Pb ages, Hf isotope data, and tectonic implications of Early–Middle Triassic granitoids in the Ailaoshan high-grade metamorphic belt of Southeast Tibet , 2017, International Journal of Earth Sciences.

[17]  Liang Zhao,et al.  Variable sediment flux in generation of Permian subduction-related mafic intrusions from the Yanbian region, NE China , 2016 .

[18]  S. Meffre,et al.  Where was the Ailaoshan Ocean and when did it open: A perspective based on detrital zircon U-Pb age and Hf isotope evidence , 2016 .

[19]  Wei Lin,et al.  Triassic tectonics of the Ailaoshan Belt (SW China): Early Triassic collision between the South China and Indochina Blocks, and Middle Triassic intracontinental shearing , 2016 .

[20]  Wei Lin,et al.  Triassic tectonics of the southern margin of the South China Block , 2016 .

[21]  J. Li,et al.  IsotopeMaker: A Matlab program for isotopic data reduction , 2015 .

[22]  Peter A. Cawood,et al.  Record of Tethyan ocean closure and Indosinian collision along the Ailaoshan suture zone (SW China) , 2015 .

[23]  Qingfei Wang,et al.  The boundary between the Simao and Yangtze blocks and their locations in Gondwana and Rodinia: Constraints from detrital and inherited zircons , 2014 .

[24]  Zhong‐Yuan Ren,et al.  Lead isotope analysis of melt inclusions by LA-MC-ICP-MS , 2014 .

[25]  A. Crawford,et al.  The Central Ailaoshan ophiolite and modern analogs , 2014 .

[26]  A. Crawford,et al.  The Western Ailaoshan Volcanic Belts and their SE Asia connection: a new tectonic model for the Eastern Indochina Block , 2014 .

[27]  W. Fan,et al.  Petrogenesis and tectonic implications of Late-Triassic high ɛNd(t)-ɛHf(t) granites in the Ailaoshan tectonic zone (SW China) , 2014, Science China Earth Sciences.

[28]  T. T. Anh,et al.  U-Pb dating and tectonic implication of ophiolite and metabasite from the Song Ma suture zone, northern Vietnam , 2014, American Journal of Science.

[29]  Wei Lin,et al.  The South China block-Indochina collision: Where, when, and how? , 2014 .

[30]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[31]  Yue-heng Yang,et al.  Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes , 2013 .

[32]  Chaohui Liu,et al.  Multiple metamorphic events revealed by zircons from the Diancang Shan−Ailao Shan metamorphic complex, southeastern Tibetan Plateau , 2013 .

[33]  I. Metcalfe Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys , 2013 .

[34]  Charles H. Langmuir,et al.  The mean composition of ocean ridge basalts , 2013 .

[35]  C. Key,et al.  Discovery of the Late Paleozoic ocean island basalts(OIB) in Hainan Island and their geodynamic implications , 2013 .

[36]  Zhang Yingli,et al.  Geochemistry of Permian Mafic Igneous Rocks from the Napo‐Qinzhou Tectonic Belt in Southwest Guangxi, Southwest China: Implications for Arc‐Back Arc Basin Magmatic Evolution , 2012 .

[37]  Q. Nguyen,et al.  Permo-Triassic granitoids in the northern part of the Truong Son belt, NW Vietnam: Geochronology, geochemistry and tectonic implications , 2012 .

[38]  Peter A. Cawood,et al.  Triassic collision in the Paleo-Tethys Ocean constrained by volcanic activity in SW China , 2012 .

[39]  M. Searle,et al.  Zircon U–Pb and Hf isotope constraints from the Ailao Shan–Red River shear zone on the tectonic and crustal evolution of southwestern China , 2012 .

[40]  K. Hou,et al.  Zircon U–Pb and Lu–Hf isotopic systematics of the Daping plutonic rocks: Implications for the Neoproterozoic tectonic evolution of the northeastern margin of the Indochina block, Southwest China , 2012 .

[41]  Heng Chen,et al.  Zircon U-Pb ages, Hf-O isotopes and whole-rock Sr-Nd-Pb isotopic geochemistry of granitoids in the Jinshajiang suture zone, SW China:Constraints on petrogenesis and tectonic evolution of the Paleo-Tethys Ocean , 2011 .

[42]  Qing-Hua Xiao Geochronology and geochemistry of Early Mesozoic acid volcanic rocks from Southwest Guangxi: Constraints on tectonic evolution of the southwestern segment of Qinzhou-Hangzhou joint belt , 2011 .

[43]  E. Stolper,et al.  Monte Carlo Simulations of Metasomatic Enrichment in the Lithosphere and Implications for the Source of Alkaline Basalts , 2011 .

[44]  J. Deng,et al.  The Characteristics of Volcanic Rocks from Late Permian to Early Traissic in Ailaoshan Tectono-magmatic Belt and Implications for Tectonic Settings , 2011 .

[45]  W. Fan,et al.  Permian arc–back-arc basin development along the Ailaoshan tectonic zone: Geochemical, isotopic and geochronological evidence from the Mojiang volcanic rocks, Southwest China , 2010 .

[46]  Xian‐Hua Li,et al.  Precise U–Pb and Pb–Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique , 2010 .

[47]  Yue-heng Yang,et al.  Penglai Zircon Megacrysts: A Potential New Working Reference Material for Microbeam Determination of Hf–O Isotopes and U–Pb Age , 2010 .

[48]  Xian‐Hua Li,et al.  Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization , 2009 .

[49]  Kai‐Jun Zhang,et al.  A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic , 2009 .

[50]  G. Zellmer,et al.  The role of Fe-Ti oxide crystallization in the formation of A-type granitoids with implications for the Daly gap: An example from the Permian Baima igneous complex, SW China , 2009 .

[51]  N. Kita SITU OXYGEN ISOTOPE GEOCHEMISTRY BY ION MICROPROBE , 2009 .

[52]  M. Whitehouse,et al.  Plesovice zircon : A new natural reference material for U-Pb and Hf isotopic microanalysis , 2008 .

[53]  N. Arndt,et al.  Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array , 2008 .

[54]  Katherine A. Kelley,et al.  Chemical composition of sediments subducting at the Izu‐Bonin trench , 2007 .

[55]  Takeyoshi Yoshida,et al.  Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25 Myr: Constraints from geochemistry , 2006 .

[56]  Xian‐Hua Li,et al.  Initiation of the Indosinian Orogeny in South China: Evidence for a Permian Magmatic Arc on Hainan Island , 2006, The Journal of Geology.

[57]  Y. Liu,et al.  Geochemistry of the 755 Ma Mundine Well dyke swarm, northwestern Australia: Part of a Neoproterozoic mantle superplume beneath Rodinia? , 2006 .

[58]  M. Basei,et al.  4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon , 2005 .

[59]  J. Gill,et al.  Hafnium systematics of the Mariana arc: Evidence for sediment melt and residual phases , 2005 .

[60]  S. Hart,et al.  Major and trace element composition of the depleted MORB mantle (DMM) , 2005 .

[61]  C. Lepvrier,et al.  The Early Triassic Indosinian orogeny in Vietnam (Truong Son Belt and Kontum Massif); implications for the geodynamic evolution of Indochina , 2004 .

[62]  P. Castillo,et al.  Geochemical and Nd–Pb isotopic characteristics of the Tethyan asthenosphere: implications for the origin of the Indian Ocean mantle domain , 2004 .

[63]  P. Kelemen,et al.  Along‐Strike Variation in the Aleutian Island Arc: Genesis of High Mg# Andesite and Implications for Continental Crust , 2013 .

[64]  L. Halicz,et al.  Accurate isotope ratio measurements of ytterbium by multiple collection inductively coupled plasma mass spectrometry applying erbium and hafnium in an improved double external normalization procedure , 2003 .

[65]  F. Corfu,et al.  Atlas of Zircon Textures , 2003 .

[66]  P. Jian,et al.  The Jinshajiang–Ailaoshan Suture Zone, China: tectonostratigraphy, age and evolution , 2000 .

[67]  An Yin,et al.  Geologic Evolution of the Himalayan-Tibetan Orogen , 2000 .

[68]  Charles H. Langmuir,et al.  The chemical composition of subducting sediment and its consequences for the crust and mantle , 1998 .

[69]  S. Nakano,et al.  Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts , 1997 .

[70]  Pei-Ling Wang,et al.  Intraplate extension prior to continental extrusion along the Ailao Shan-Red River shear zone , 1997 .

[71]  E. Watson,et al.  Dehydration melting of metabasalt at 8-32 kbar : Implications for continental growth and crust-mantle recycling , 1995 .

[72]  F. McDermott,et al.  Mantle and Slab Contributions in ARC Magmas , 1993 .

[73]  B. Singer,et al.  Mid-Pleistocene lavas from the Seguam volcanic center, central Aleutian arc: closed-system fractional crystallization of a basalt to rhyodacite eruptive suite , 1992 .

[74]  J. Brophy Composition gaps, critical crystallinity, and fractional crystallization in orogenic (calc-alkaline) magmatic systems , 1991 .

[75]  D. McKenzie,et al.  Partial melt distributions from inversion of rare earth element concentrations , 1991 .

[76]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[77]  J. B. Waterhouse,et al.  Petrogenesis of Gympie Group volcanics: evidence for remnants of an early Permian volcanic arc in eastern Australia , 1988 .