Influence of metallic dental implants and metal artefacts on dose calculation accuracy

PurposeMetallic dental implants cause severe streaking artefacts in computed tomography (CT) data, which inhibit the correct representation of shape and density of the metal and the surrounding tissue. The aim of this study was to investigate the impact of dental implants on the accuracy of dose calculations in radiation therapy planning and the benefit of metal artefact reduction (MAR). A second aim was to determine the treatment technique which is less sensitive to the presence of metallic implants in terms of dose calculation accuracy.Materials and methodsPhantoms consisting of homogeneous water equivalent material surrounding dental implants were designed. Artefact-containing CT data were corrected using the correct density information. Intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were calculated on corrected and uncorrected CT data and compared to 2-dimensional dose measurements using GafChromic™ EBT2 films.ResultsFor all plans the accuracy of dose calculations is significantly higher if performed on corrected CT data (p = 0.015). The agreement of calculated and measured dose distributions is significantly higher for VMAT than for IMRT plans for calculations on uncorrected CT data (p = 0.011) as well as on corrected CT data (p = 0.029).ConclusionFor IMRT and VMAT the application of metal artefact reduction significantly increases the agreement of dose calculations with film measurements. VMAT was found to provide the highest accuracy on corrected as well as on uncorrected CT data. VMAT is therefore preferable over IMRT for patients with metallic implants, if plan quality is comparable for the two techniques.ZusammenfassungZielZahnimplantate aus Metall verursachen in Computertomographiedaten (CT) streifenförmige Artefakte. Diese verhindern eine korrekte Zuordnung von Form und Dichteeigenschaften des Metalls und des umgebenden Gewebes. Ziel dieser Studie war es, den Einfluss von Zahnimplantaten auf die Genauigkeit der Dosisberechnung in der Strahlentherapie zu untersuchen und zu überprüfen, ob eine reine Reduktion der Metallartefakte ohne Korrektur der Form und der Dichtewerte des Metallimplantats eine genauere Dosisberechnung ermöglicht. Als zweites Ziel sollte die Bestrahlungstechnik bestimmt werden, welche bei vorhandenen metallischen Implantaten, in Bezug auf die Dosisberechnungsgenauigkeit am wenigsten fehleranfällig ist.Methoden und MaterialEs wurden Phantome aus homogenem wasseräquivalentem Material mit Zahnimplantaten entworfen. CT-Daten welche Artefakte enthielten wurden mit den richtigen Dichtewerten korrigiert. Auf korrigierten und nichtkorrigierten CT-Daten wurden IMRT (intensity-modulated radiation therapy) und VMAT (volumetric modulated arc therapy)-Pläne berechnet und mit 2-dimensionalen Dosismessungen, welche mit GafChromic™-EBT2-Filmen durchgeführt wurden, verglichen.ErgebnisseDie Dosisberechnungsgenauigkeit ist für alle Pläne signifikant besser, wenn die Berechnungen auf korrigierten Daten durchgeführt wurden (p = 0,015). Berechnete und gemessene Dosisverteilungen stimmen für VMAT-Pläne signifikant besser überein als für IMRT-Pläne, sowohl bei Rechnungen auf nichtkorrigierten (p = 0,011) als auch auf korrigierten (p = 0,029) CT-Daten.SchlussfolgerungFür IMRT und VMAT wird die Übereinstimmung von berechneten und gemessenen Dosisverteilungen signifikant erhöht. Es wurde gezeigt, dass VMAT sowohl auf korrigierten als auch auf nichtkorrigierten CT-Daten die höchste Genauigkeit liefert. Wenn die Planqualität für beide Techniken vergleichbar ist, sollte bei Patienten mit Metallimplantaten die VMAT der IMRT vorgezogen werden.

[1]  Suresh Senan,et al.  Volumetric modulated arc radiotherapy for vestibular schwannomas. , 2009, International journal of radiation oncology, biology, physics.

[2]  Volker Steil,et al.  Optimization of the gafchromic EBT protocol for IMRT QA. , 2009, Zeitschrift fur medizinische Physik.

[3]  M. Carolan,et al.  Effect of hip prostheses on radiotherapy dose. , 2000, Australasian radiology.

[4]  Sasa Mutic,et al.  Clinical evaluation of a commercial orthopedic metal artifact reduction tool for CT simulations in radiation therapy. , 2012, Medical physics.

[5]  A. Micke,et al.  Multichannel film dosimetry with nonuniformity correction. , 2011, Medical physics.

[6]  Luca Cozzi,et al.  Volumetric-modulated arc radiotherapy for carcinomas of the anal canal: A treatment planning comparison with fixed field IMRT. , 2009, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[7]  B. Dobler,et al.  Radiation Oncology Comparison of Direct Machine Parameter Optimization versus Fluence Optimization with Sequential Sequencing in Imrt of Hypopharyngeal Carcinoma , 2007 .

[8]  Carl G Rowbottom,et al.  Evaluation of the impact of dental artefacts on intensity-modulated radiotherapy planning for the head and neck. , 2009, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[9]  J. Lutterbach,et al.  Impact of Gantry Rotation Time on Plan Quality and Dosimetric Verification – Volumetric Modulated Arc Therapy (VMAT) vs. Intensity Modulated Radiotherapy (IMRT) , 2011, Strahlentherapie und Onkologie.

[10]  Noor Mail,et al.  The impacts of dental filling materials on RapidArc treatment planning and dose delivery: challenges and solution. , 2013, Medical physics.

[11]  B G Fallone,et al.  Evaluation of normalized metal artifact reduction (NMAR) in kVCT using MVCT prior images for radiotherapy treatment planning. , 2013, Medical physics.

[12]  L. Menegotti,et al.  Radiochromic film dosimetry with flatbed scanners: a fast and accurate method for dose calibration and uniformity correction with single film exposure. , 2008, Medical physics.

[13]  Maria F Chan,et al.  An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan. , 2012, Medical physics.

[14]  F. Lohr,et al.  Optimization of extracranial stereotactic radiation therapy of small lung lesions using accurate dose calculation algorithms , 2006, Radiation oncology.

[15]  Luca Cozzi,et al.  Volumetric modulated arc radiotherapy for carcinomas of the oro-pharynx, hypo-pharynx and larynx: a treatment planning comparison with fixed field IMRT. , 2009, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[16]  Richard Shaffer,et al.  Volumetric modulated arc therapy improves dosimetry and reduces treatment time compared to conventional intensity-modulated radiotherapy for locoregional radiotherapy of left-sided breast cancer and internal mammary nodes. , 2010, International journal of radiation oncology, biology, physics.

[17]  Jikun Wei,et al.  Dosimetric impact of a CT metal artefact suppression algorithm for proton, electron and photon therapies , 2006, Physics in medicine and biology.

[18]  B. Dobler,et al.  Searching standard parameters for volumetric modulated arc therapy (VMAT) of prostate cancer , 2012, Radiation oncology.

[19]  Luca Cozzi,et al.  A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy. , 2008, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[20]  Wolfgang A. Tomé,et al.  On the radiobiological impact of metal artifacts in head-and-neck IMRT in terms of tumor control probability (TCP) and normal tissue complication probability (NTCP) , 2007, Medical & Biological Engineering & Computing.

[21]  Satyapal Rathee,et al.  Clinical evaluation of normalized metal artifact reduction in kVCT using MVCT prior images (MVCT-NMAR) for radiation therapy treatment planning. , 2014, International journal of radiation oncology, biology, physics.

[22]  Mehran Yazdi,et al.  An opposite view data replacement approach for reducing artifacts due to metallic dental objects. , 2011, Medical physics.

[24]  Maria Francesca Spadea,et al.  The impact of low-Z and high-Z metal implants in IMRT: a Monte Carlo study of dose inaccuracies in commercial dose algorithms. , 2013, Medical physics.

[25]  Karl Otto,et al.  Volumetric modulated arc therapy: IMRT in a single gantry arc. , 2007, Medical physics.

[26]  R. Cloutier Tissue Substitutes in Radiation Dosimetry and Measurement. , 1989 .

[27]  Luc Beaulieu,et al.  Correction of CT artifacts and its influence on Monte Carlo dose calculations. , 2007, Medical physics.

[28]  D. Low,et al.  A technique for the quantitative evaluation of dose distributions. , 1998, Medical physics.

[29]  Andrew Jackson,et al.  Intensity-modulated radiotherapy. , 2002, Cancer journal.

[30]  J. Mechalakos,et al.  IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. , 2009, Medical physics.

[31]  W. S. Snyder,et al.  Report of the task group on reference man , 1979, Annals of the ICRP.

[32]  A. Grosu,et al.  VMAT and Step-and-Shoot IMRT in Head and Neck Cancer , 2011, Strahlentherapie und Onkologie.

[33]  B. Dobler,et al.  Application of volumetric modulated arc therapy (VMAT) in a dual-vendor environment , 2010, Radiation oncology.

[34]  D. Georg,et al.  Node-positive left-sided breast cancer: does VMAT improve treatment plan quality with respect to IMRT? , 2013, Strahlentherapie und Onkologie.

[35]  Todd R McNutt,et al.  The impact of dental metal artifacts on head and neck IMRT dose distributions. , 2006, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[36]  K. Otto,et al.  Volumetric modulated arc therapy for delivery of prostate radiotherapy: comparison with intensity-modulated radiotherapy and three-dimensional conformal radiotherapy. , 2008, International journal of radiation oncology, biology, physics.

[37]  R Roberts,et al.  How accurate is a CT-based dose calculation on a pencil beam TPS for a patient with a metallic prosthesis? , 2001, Physics in medicine and biology.

[38]  T. Bortfeld IMRT: a review and preview , 2006, Physics in medicine and biology.

[39]  Joao Seco,et al.  Dosimetric assessment of a novel metal artifact reduction method in CT images , 2013, Journal of applied clinical medical physics.