A 40 GHz CMOS transceiver and radio front-end for the customer premise equipment unit of a radio-over-fiber system

A miniature 40 GHz transceiver and radio front-end designed and simulated using a 0.13-μm RF CMOS process for Radio-over-Fiber applications is presented in this paper. The transceiver employs a direct-conversion architecture. The radio is designed for a frequency division duplex (FDD) communications system. PHY layer data rates as high as 1.5 Gbps on a wireless link are feasible using this radio design. The phase-locked-loop (PLL) and supporting digital circuits however, are not included. The receiver shows a power gain of about 41 dB with a LNA noise figure of 7 dB. The transmitter achieves a conversion gain of about 40.7 dB and an output P1dB of 10.7 dBm.

[1]  F. Ellinger 26-42 GHz SOI CMOS low noise amplifier , 2004, IEEE Journal of Solid-State Circuits.

[2]  S. M. Idrus,et al.  Live HD video transmission using 40GHz radio over fibre downlink system , 2012, 2012 IEEE 3rd International Conference on Photonics.

[3]  Jeng-Han Tsai,et al.  A Miniature Q-Band Low Noise Amplifier Using 0.13- m CMOS Technology , 2009 .

[4]  R. Schiffer,et al.  INTRODUCTION , 1988, Neurology.

[5]  R.W. Brodersen,et al.  Millimeter-wave CMOS design , 2005, IEEE Journal of Solid-State Circuits.

[6]  H. Shigematsu,et al.  CMOS circuit design for millimeter-wave applications , 2004, 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers.

[7]  Jeng-Han Tsai,et al.  A miniature Q-band low noise amplifier using 0.13-/spl mu/m CMOS technology , 2006 .

[8]  Ali M. Niknejad,et al.  Amplifiers and Mixers , 2008 .

[9]  Joohwa Kim,et al.  A Switchless, Q-Band Bidirectional Transceiver in 0.12-µm SiGe BiCMOS Technology , 2012, IEEE J. Solid State Circuits.