Convergence Rates for Penalized Least Squares Estimators in PDE Constrained Regression Problems

We consider PDE constrained nonparametric regression problems in which the parameter $f$ is the unknown coefficient function of a second order elliptic partial differential operator $L_f$, and the unique solution $u_f$ of the boundary value problem \[L_fu=g_1\text{ on } \mathcal O, \quad u=g_2 \text{ on }\partial \mathcal O,\] is observed corrupted by additive Gaussian white noise. Here $\mathcal O$ is a bounded domain in $\mathbb R^d$ with smooth boundary $\partial \mathcal O$, and $g_1, g_2$ are given functions defined on $\mathcal O, \partial \mathcal O$, respectively. Concrete examples include $L_fu=\Delta u-2fu$ (Schrodinger equation with attenuation potential $f$) and $L_fu=\text{div} (f\nabla u)$ (divergence form equation with conductivity $f$). In both cases, the parameter space \[\mathcal F=\{f\in H^\alpha(\mathcal O)| f > 0\}, ~\alpha>0, \] where $H^\alpha(\mathcal O)$ is the usual order $\alpha$ Sobolev space, induces a set of non-linearly constrained regression functions $\{u_f: f \in \mathcal F\}$. We study Tikhonov-type penalised least squares estimators $\hat f$ for $f$. The penalty functionals are of squared Sobolev-norm type and thus $\hat f$ can also be interpreted as a Bayesian `MAP'-estimator corresponding to some Gaussian process prior. We derive rates of convergence of $\hat f$ and of $u_{\hat f}$, to $f, u_f$, respectively. We prove that the rates obtained are minimax-optimal in prediction loss. Our bounds are derived from a general convergence rate result for non-linear inverse problems whose forward map satisfies a mild modulus of continuity condition, a result of independent interest that is applicable also to linear inverse problems, illustrated in an example with the Radon transform.

[1]  H. Engl,et al.  Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems , 1993 .

[2]  W. Ziemer Weakly differentiable functions , 1989 .

[3]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[4]  Nicolai Bissantz,et al.  Convergence Rates of General Regularization Methods for Statistical Inverse Problems and Applications , 2007, SIAM J. Numer. Anal..

[5]  S. Vollmer,et al.  Posterior consistency for Bayesian inverse problems through stability and regression results , 2013, 1302.4101.

[6]  Qinian Jin,et al.  Tikhonov regularization and a posteriori rules for solving nonlinear ill posed problems , 2003 .

[7]  H. Triebel Theory Of Function Spaces , 1983 .

[8]  A. Stuart,et al.  MAP estimators and their consistency in Bayesian nonparametric inverse problems , 2013, 1303.4795.

[9]  H. Engl,et al.  Convergence rates for Tikhonov regularisation of non-linear ill-posed problems , 1989 .

[10]  M. Nashed,et al.  Tikhonov regularization of nonlinear ill-posed problems with closed operators in Hilbert scales , 1997 .

[11]  Penalized estimators for non linear inverse problems , 2010 .

[12]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[13]  A. V. D. Vaart,et al.  BAYESIAN INVERSE PROBLEMS WITH GAUSSIAN PRIORS , 2011, 1103.2692.

[14]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[15]  Barbara Kaltenbacher,et al.  Iterative Regularization Methods for Nonlinear Ill-Posed Problems , 2008, Radon Series on Computational and Applied Mathematics.

[16]  Richard Nickl,et al.  Bernstein–von Mises theorems for statistical inverse problems I: Schrödinger equation , 2017, Journal of the European Mathematical Society.

[17]  S. Geer Empirical Processes in M-Estimation , 2000 .

[18]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[19]  K. Kunisch,et al.  On the Injectivity and Linearization of the Coefficient-to-Solution Mapping for Elliptic Boundary Value Problems , 1994 .

[20]  Kolyan Ray,et al.  Bayesian inverse problems with non-conjugate priors , 2012, 1209.6156.

[21]  S. Geer Least Squares Estimation , 2005 .

[22]  R. Nickl,et al.  Nonparametric Bernstein–von Mises theorems in Gaussian white noise , 2012, 1208.3862.

[23]  Kai Lai Chung,et al.  From Brownian Motion To Schrödinger's Equation , 1995 .

[24]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[25]  Martin Burger,et al.  Modern regularization methods for inverse problems , 2018, Acta Numerica.

[26]  L. Nirenberg,et al.  On elliptic partial differential equations , 1959 .

[27]  L. Brown,et al.  Asymptotic equivalence of nonparametric regression and white noise , 1996 .

[28]  R. Bass Diffusions and Elliptic Operators , 1997 .

[29]  T. Hohage,et al.  Consistency and rates of convergence of nonlinear Tikhonov regularization with random noise , 2004 .

[30]  T. Hohage,et al.  Nonlinear Tikhonov regularization in Hilbert scales for inverse boundary value problems with random noise , 2008 .

[31]  Albert Cohen,et al.  Diffusion Coefficients Estimation for Elliptic Partial Differential Equations , 2016, SIAM J. Math. Anal..

[32]  Kweku Abraham Nonparametric Bayesian posterior contraction rates for scalar diffusions with high-frequency data , 2018, Bernoulli.

[33]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[34]  R. Nickl,et al.  Mathematical Foundations of Infinite-Dimensional Statistical Models , 2015 .

[35]  A. Stuart,et al.  The Bayesian Approach to Inverse Problems , 2013, 1302.6989.

[36]  Richard Nickl,et al.  Nonparametric Bayesian posterior contraction rates for discretely observed scalar diffusions , 2015, 1510.05526.

[37]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[38]  G. Richter An Inverse Problem for the Steady State Diffusion Equation , 1981 .

[39]  Guillaume Bal,et al.  Inverse diffusion theory of photoacoustics , 2009, 0910.2503.

[40]  Martin Burger,et al.  Maximum a posteriori probability estimates in infinite-dimensional Bayesian inverse problems , 2014, 1412.5816.

[41]  Richard Nickl,et al.  Efficient nonparametric Bayesian inference for $X$-ray transforms , 2017, The Annals of Statistics.

[42]  Robert E. Megginson An Introduction to Banach Space Theory , 1998 .

[43]  R. Nickl,et al.  Consistent Inversion of Noisy Non‐Abelian X‐Ray Transforms , 2019, Communications on Pure and Applied Mathematics.

[44]  Markus Reiss,et al.  Asymptotic equivalence for nonparametric regression with multivariate and random design , 2006, math/0607342.