Quantum repeaters and quantum key distribution: Analysis of secret-key rates

We analyze various prominent quantum repeater protocols in the context of long-distance quantum key distribution. These protocols are the original quantum repeater proposal by Briegel, D\"ur, Cirac and Zoller, the so-called hybrid quantum repeater using optical coherent states dispersively interacting with atomic spin qubits, and the Duan-Lukin-Cirac-Zoller-type repeater using atomic ensembles together with linear optics and, in its most recent extension, heralded qubit amplifiers. For our analysis, we investigate the most important experimental parameters of every repeater component and find their minimally required values for obtaining a nonzero secret key. Additionally, we examine in detail the impact of device imperfections on the final secret key rate and on the optimal number of rounds of distillation when the entangled states are purified right after their initial distribution.

[1]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[2]  Jacob M. Taylor,et al.  Quantum repeater with encoding , 2008, 0809.3629.

[3]  N. Lutkenhaus,et al.  Quantum repeaters with imperfect memories: Cost and scalability , 2008, 0810.5334.

[4]  Aaron J. Miller,et al.  Counting near-infrared single-photons with 95% efficiency. , 2008, Optics express.

[5]  H. Bechmann-Pasquinucci,et al.  Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography , 1998, quant-ph/9807041.

[6]  J. M. Taylor,et al.  Fast and robust approach to long-distance quantum communication with atomic ensembles , 2006, quant-ph/0609236.

[7]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[8]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[9]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[10]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[11]  S. Clifford Wave Propagation in a Turbulent Medium. , 1969 .

[12]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[13]  Kae Nemoto,et al.  Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light , 2006 .

[14]  Normand J. Beaudry,et al.  Squashing models for optical measurements in quantum communication. , 2008, Physical review letters.

[15]  奥仲 哲弥,et al.  肺門部早期肺癌に対する光線力学的治療法(肺門部早期癌の診断と治療)(第 18 回日本気管支学会総会特集号) , 1995 .

[16]  W. Munro,et al.  Quantum repeaters using coherent-state communication , 2008, 0806.1153.

[17]  A Kuzmich,et al.  Multiplexed memory-insensitive quantum repeaters. , 2007, Physical review letters.

[18]  Nicolas Sangouard,et al.  Quantum repeaters based on heralded qubit amplifiers , 2011, 1111.5185.

[19]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[20]  M. Lukin,et al.  Fault-tolerant quantum repeaters with minimal physical resources, and implementations based on single photon emitters , 2005, quant-ph/0502112.

[21]  T. Ralph,et al.  Nondeterministic Noiseless Linear Amplification of Quantum Systems , 2009 .

[22]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[23]  Markus P. Mueller,et al.  Efficient quantum repeater based on deterministic Rydberg gates , 2010, 1003.1911.

[24]  Samuel L. Braunstein,et al.  Hybrid quantum computation in quantum optics , 2008 .

[25]  C. Simon,et al.  Quantum Repeaters based on Single Trapped Ions , 2009, 0902.3127.

[26]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[27]  J Fan,et al.  Invited review article: Single-photon sources and detectors. , 2011, The Review of scientific instruments.

[28]  Hoi-Kwong Lo,et al.  Efficient Quantum Key Distribution Scheme and a Proof of Its Unconditional Security , 2004, Journal of Cryptology.

[29]  Dejan S. Milojicic,et al.  Networking , 2012, ATZelektronik worldwide.

[30]  Peter van Loock,et al.  Rate analysis for a hybrid quantum repeater , 2010, 1010.0106.

[31]  D. Bruß Optimal Eavesdropping in Quantum Cryptography with Six States , 1998, quant-ph/9805019.

[32]  B Kraus,et al.  Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication. , 2004, Physical review letters.

[33]  Ryo Namiki,et al.  Optimal entanglement generation for efficient hybrid quantum repeaters , 2009 .

[34]  P. Kok,et al.  Postselected versus nonpostselected quantum teleportation using parametric down-conversion , 1999, quant-ph/9903074.

[35]  N. Gisin,et al.  Quantum relays for long distance quantum cryptography , 2003, quant-ph/0311101.

[36]  B. He,et al.  Quantum repeaters based on Rydberg-blockade-coupled atomic ensembles , 2010, 1003.2353.

[37]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[38]  Zhi-Ming Zhang,et al.  Entangling distant atoms by interference of polarized photons. , 2003, Physical review letters.

[39]  Quantum key distribution over atomic-ensemble quantum repeaters , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[40]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[41]  Xiongfeng Ma,et al.  Efficient heralding of photonic qubits with applications to device-independent quantum key distribution , 2011, 1105.2811.

[42]  Deutsch,et al.  Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels. , 1996, Physical review letters.

[43]  Kae Nemoto,et al.  Loss in hybrid qubit-bus couplings and gates , 2008, 0804.3240.

[44]  T. Moroder,et al.  Heralded-qubit amplifiers for practical device-independent quantum key distribution , 2011, 1105.2573.

[45]  Hoi-Kwong Lo,et al.  Universal squash model for optical communications using linear optics and threshold detectors , 2011 .

[46]  Alois Renn,et al.  A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[47]  R. A. Silverman,et al.  Wave Propagation in a Turbulent Medium , 1961 .

[48]  K. Nemoto,et al.  System Design for a Long-Line Quantum Repeater , 2007, IEEE/ACM Transactions on Networking.

[49]  J. Cirac,et al.  Creation of entangled states of distant atoms by interference , 1998, quant-ph/9810013.

[50]  Jörn Müller-Quade,et al.  Composability in quantum cryptography , 2009, ArXiv.

[51]  R. Renner,et al.  Information-theoretic security proof for quantum-key-distribution protocols , 2005, quant-ph/0502064.

[52]  Mohsen Razavi,et al.  Quantum key distribution over probabilistic quantum repeaters , 2010 .

[53]  Peter van Loock,et al.  Hybrid quantum repeater with encoding , 2012 .

[54]  Christoph Simon,et al.  Long-Distance Entanglement Distribution with Single-Photon Sources , 2007, 0706.1924.

[55]  B. Sanders,et al.  Long-distance practical quantum key distribution by entanglement swapping. , 2010, Optics express.

[56]  W. Munro,et al.  Hybrid quantum repeater using bright coherent light. , 2005, Physical Review Letters.

[57]  Nathan Walk,et al.  Security of continuous-variable quantum cryptography with Gaussian postselection , 2013 .

[58]  Liang Jiang,et al.  Optimal approach to quantum communication using dynamic programming , 2007, Proceedings of the National Academy of Sciences.

[59]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[60]  A. Fowler,et al.  Surface code quantum communication. , 2009, Physical review letters.

[61]  R. Renner,et al.  An information-theoretic security proof for QKD protocols , 2005, quant-ph/0502064.

[62]  W. Marsden I and J , 2012 .

[63]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[64]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[65]  N. Gisin,et al.  Long distance quantum teleportation in quantum relay configuration , 2003, 2003 European Quantum Electronics Conference. EQEC 2003 (IEEE Cat No.03TH8665).

[66]  Pieter Kok,et al.  Introduction to Optical Quantum Information Processing: Preface , 2010 .

[67]  H. Weinfurter,et al.  Experimental Entanglement Swapping: Entangling Photons That Never Interacted , 1998 .

[68]  N. Gisin,et al.  Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. , 2010, Physical review letters.

[69]  N. Cerf,et al.  Gaussian postselection and virtual noiseless amplification in continuous-variable quantum key distribution , 2012 .

[70]  J. H. Müller,et al.  Quantum memories , 2010, 1003.1107.

[71]  N. Gisin,et al.  Quantum repeaters with photon pair sources and multimode memories. , 2007, Physical review letters.

[72]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[73]  Edo Waks,et al.  Security of quantum key distribution with entangled photons against individual attacks , 2000, quant-ph/0012078.