ON GENERALIZING THE AMG FRAMEWORK

Abstract. We present a theory for algebraic multigrid (AMG) methods that allows for general smoothing processes and general coarsening approaches. The goal of the theory is to provide guidance in the development of new, more robust, AMG algorithms. In particular, we introduce several compatible relaxation methods and give theoretical justification for their use as tools for measuring the quality of coarse grids.

[1]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[2]  Van Emden Henson,et al.  Robustness and Scalability of Algebraic Multigrid , 1999, SIAM J. Sci. Comput..

[3]  Randolph E. Bank,et al.  Hierarchical bases and the finite element method , 1996, Acta Numerica.

[4]  StübenKlaus Algebraic multigrid (AMG) , 1983 .

[5]  Thomas A. Manteuffel,et al.  Algebraic Multigrid Based on Element Interpolation (AMGe) , 2000, SIAM J. Sci. Comput..

[6]  Douglas N. Arnold,et al.  Multigrid in H (div) and H (curl) , 2000, Numerische Mathematik.

[7]  A. Brandt Algebraic multigrid theory: The symmetric case , 1986 .

[8]  J. Ruge,et al.  Efficient solution of finite difference and finite element equations by algebraic multigrid (AMG) , 1984 .

[9]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[10]  A. Brandt,et al.  Multigrid Solutions to Elliptic Flow Problems , 1979 .

[11]  Charles I. Goldstein,et al.  Multilevel Iteration for Mixed Finite Element Systems with Penalty , 1993, SIAM J. Sci. Comput..

[12]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[13]  J. Maître,et al.  The contraction number of a class of two-level methods; an exact evaluation for some finite element subspaces and model problems , 1982 .

[14]  Jim E. Jones,et al.  AMGE Based on Element Agglomeration , 2001, SIAM J. Sci. Comput..

[15]  Panayot S. Vassilevski,et al.  Spectral AMGe (ρAMGe) , 2003, SIAM J. Sci. Comput..

[16]  A. Brandt General highly accurate algebraic coarsening. , 2000 .

[17]  Panayot S. Vassilevski,et al.  Element-Free AMGe: General Algorithms for Computing Interpolation Weights in AMG , 2001, SIAM J. Sci. Comput..

[18]  O. E. Livne,et al.  Coarsening by compatible relaxation , 2004, Numer. Linear Algebra Appl..