ON GENERALIZING THE AMG FRAMEWORK
暂无分享,去创建一个
[1] F. Thomasset. Finite element methods for Navier-Stokes equations , 1980 .
[2] Van Emden Henson,et al. Robustness and Scalability of Algebraic Multigrid , 1999, SIAM J. Sci. Comput..
[3] Randolph E. Bank,et al. Hierarchical bases and the finite element method , 1996, Acta Numerica.
[4] StübenKlaus. Algebraic multigrid (AMG) , 1983 .
[5] Thomas A. Manteuffel,et al. Algebraic Multigrid Based on Element Interpolation (AMGe) , 2000, SIAM J. Sci. Comput..
[6] Douglas N. Arnold,et al. Multigrid in H (div) and H (curl) , 2000, Numerische Mathematik.
[7] A. Brandt. Algebraic multigrid theory: The symmetric case , 1986 .
[8] J. Ruge,et al. Efficient solution of finite difference and finite element equations by algebraic multigrid (AMG) , 1984 .
[9] Jinchao Xu,et al. Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..
[10] A. Brandt,et al. Multigrid Solutions to Elliptic Flow Problems , 1979 .
[11] Charles I. Goldstein,et al. Multilevel Iteration for Mixed Finite Element Systems with Penalty , 1993, SIAM J. Sci. Comput..
[12] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[13] J. Maître,et al. The contraction number of a class of two-level methods; an exact evaluation for some finite element subspaces and model problems , 1982 .
[14] Jim E. Jones,et al. AMGE Based on Element Agglomeration , 2001, SIAM J. Sci. Comput..
[15] Panayot S. Vassilevski,et al. Spectral AMGe (ρAMGe) , 2003, SIAM J. Sci. Comput..
[16] A. Brandt. General highly accurate algebraic coarsening. , 2000 .
[17] Panayot S. Vassilevski,et al. Element-Free AMGe: General Algorithms for Computing Interpolation Weights in AMG , 2001, SIAM J. Sci. Comput..
[18] O. E. Livne,et al. Coarsening by compatible relaxation , 2004, Numer. Linear Algebra Appl..