Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody

[1]  L. Pirofski,et al.  A Replication-Competent Vesicular Stomatitis Virus for Studies of SARS-CoV-2 Spike-Mediated Cell Entry and Its Inhibition , 2020, Cell Host & Microbe.

[2]  Linqi Zhang,et al.  Human neutralizing antibodies elicited by SARS-CoV-2 infection , 2020, Nature.

[3]  C. Rice,et al.  Convergent Antibody Responses to SARS-CoV-2 Infection in Convalescent Individuals , 2020, bioRxiv.

[4]  Daniel Wrapp,et al.  Site-specific glycan analysis of the SARS-CoV-2 spike , 2020, Science.

[5]  A. Iwasaki,et al.  The potential danger of suboptimal antibody responses in COVID-19 , 2020, Nature Reviews Immunology.

[6]  B. Kelley Developing therapeutic monoclonal antibodies at pandemic pace , 2020, Nature Biotechnology.

[7]  I. Wilson,et al.  A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV , 2020, Science.

[8]  Linqi Zhang,et al.  Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor , 2020, Nature.

[9]  Daniel Wrapp,et al.  Site-specific analysis of the SARS-CoV-2 glycan shield , 2020, bioRxiv.

[10]  Jia-Fu Jiang,et al.  Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins , 2020, Nature.

[11]  Lei Liu,et al.  Potent human neutralizing antibodies elicited by SARS-CoV-2 infection , 2020, bioRxiv.

[12]  K. Shi,et al.  Structural basis of receptor recognition by SARS-CoV-2 , 2020, Nature.

[13]  C. Broder,et al.  A Cryptic Site of Vulnerability on the Receptor Binding Domain of the SARS-CoV-2 Spike Glycoprotein , 2020, bioRxiv.

[14]  Frank Grosveld,et al.  A human monoclonal antibody blocking SARS-CoV-2 infection , 2020, Nature Communications.

[15]  A. Walls,et al.  Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein , 2020, Cell.

[16]  Jing Yuan,et al.  Viral Architecture of SARS-CoV-2 with Post-Fusion Spike Revealed by Cryo-EM , 2020, bioRxiv.

[17]  G. Herrler,et al.  SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor , 2020, Cell.

[18]  Qiang Zhou,et al.  Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2 , 2020, Science.

[19]  Andrea Marzi,et al.  Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses , 2020, Nature Microbiology.

[20]  B. Graham,et al.  Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation , 2020, Science.

[21]  A. Chaillon,et al.  Transmission dynamics and evolutionary history of 2019‐nCoV , 2020, Journal of medical virology.

[22]  Kai Zhao,et al.  A pneumonia outbreak associated with a new coronavirus of probable bat origin , 2020, Nature.

[23]  E. Holmes,et al.  Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding , 2020, The Lancet.

[24]  G. Gao,et al.  A Novel Coronavirus from Patients with Pneumonia in China, 2019 , 2020, The New England journal of medicine.

[25]  Zhènglì Shí,et al.  Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody , 2020, bioRxiv.

[26]  A. Walls,et al.  Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors , 2019, Nature Structural & Molecular Biology.

[27]  M. Levine Monoclonal Antibody Therapy for Ebola Virus Disease. , 2019, The New England journal of medicine.

[28]  Christopher J. Williams,et al.  Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix , 2019, Acta crystallographica. Section D, Structural biology.

[29]  Dimitry Tegunov,et al.  Real-time cryo–EM data pre-processing with Warp , 2019, Nature Methods.

[30]  D. Veesler,et al.  Structural insights into coronavirus entry , 2019, Advances in Virus Research.

[31]  Alexandra C Walls,et al.  Structural basis for human coronavirus attachment to sialic acid receptors , 2019, Nature Structural & Molecular Biology.

[32]  A. Walls,et al.  Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion , 2019, Cell.

[33]  Jared Adolf-Bryfogle,et al.  Automatically Fixing Errors in Glycoprotein Structures with Rosetta , 2018, Structure.

[34]  Erik Lindahl,et al.  New tools for automated high-resolution cryo-EM structure determination in RELION-3 , 2018, eLife.

[35]  Jasenko Zivanov,et al.  A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis , 2018, bioRxiv.

[36]  Conrad C. Huang,et al.  UCSF ChimeraX: Meeting modern challenges in visualization and analysis , 2018, Protein science : a publication of the Protein Society.

[37]  A. Walls,et al.  Glycan Shield and Fusion Activation of a Deltacoronavirus Spike Glycoprotein Fine-Tuned for Enteric Infections , 2017, Journal of Virology.

[38]  Caitlin E. Mullarkey,et al.  Alveolar macrophages are critical for broadly-reactive antibody-mediated protection against influenza A virus in mice , 2017, Nature Communications.

[39]  M. Mathieu,et al.  IgG Fc engineering to modulate antibody effector functions , 2017, Protein & Cell.

[40]  A. Walls,et al.  Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion , 2017, Proceedings of the National Academy of Sciences.

[41]  Barney S. Graham,et al.  Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen , 2017, Proceedings of the National Academy of Sciences.

[42]  Joseph H. Davis,et al.  Addressing preferred specimen orientation in single-particle cryo-EM through tilting , 2017, Nature Methods.

[43]  David J. Fleet,et al.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination , 2017, Nature Methods.

[44]  G. Whittaker,et al.  Murine Leukemia Virus (MLV)-based Coronavirus Spike-pseudotyped Particle Production and Infection. , 2016, Bio-protocol.

[45]  Frank DiMaio,et al.  Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy , 2016, Nature Structural &Molecular Biology.

[46]  M. Beltramello,et al.  Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection , 2016, Science.

[47]  Frank DiMaio,et al.  Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta , 2016, bioRxiv.

[48]  J. Mascola,et al.  Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody , 2016, Science.

[49]  Lisa E. Gralinski,et al.  SARS-like WIV1-CoV poised for human emergence , 2016, Proceedings of the National Academy of Sciences.

[50]  F. Dimaio,et al.  Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer , 2016, Nature.

[51]  Keith S Wilson,et al.  Privateer: software for the conformational validation of carbohydrate structures , 2015, Nature Structural &Molecular Biology.

[52]  Nathaniel Echols,et al.  EMRinger: Side-chain-directed model and map validation for 3D Electron Cryomicroscopy , 2015, Nature Methods.

[53]  R. Baric,et al.  Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus , 2015, Proceedings of the National Academy of Sciences.

[54]  R. Baric,et al.  Two Mutations Were Critical for Bat-to-Human Transmission of Middle East Respiratory Syndrome Coronavirus , 2015, Journal of Virology.

[55]  J. Ravetch,et al.  Differential Fc-Receptor Engagement Drives an Anti-tumor Vaccinal Effect , 2015, Cell.

[56]  Alan Brown,et al.  Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions , 2015, Acta crystallographica. Section D, Biological crystallography.

[57]  M. Denison,et al.  Thinking Outside the Triangle: Replication Fidelity of the Largest RNA Viruses. , 2014, Annual review of virology.

[58]  J. Epstein,et al.  Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor , 2013, Nature.

[59]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[60]  Shaoxia Chen,et al.  Prevention of overfitting in cryo-EM structure determination , 2012, Nature Methods.

[61]  J. Skehel,et al.  A Neutralizing Antibody Selected from Plasma Cells That Binds to Group 1 and Group 2 Influenza A Hemagglutinins , 2011, Science.

[62]  Owen Johnson,et al.  iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM , 2011, Acta crystallographica. Section D, Biological crystallography.

[63]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[64]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[65]  R. Baric,et al.  Escape from Human Monoclonal Antibody Neutralization Affects In Vitro and In Vivo Fitness of Severe Acute Respiratory Syndrome Coronavirus , 2010, The Journal of infectious diseases.

[66]  G. A. Lazar,et al.  Enhanced antibody half-life improves in vivo activity , 2010, Nature Biotechnology.

[67]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[68]  R. Baric,et al.  Structural Basis for Potent Cross-Neutralizing Human Monoclonal Antibody Protection against Lethal Human and Zoonotic Severe Acute Respiratory Syndrome Coronavirus Challenge , 2008, Journal of Virology.

[69]  D. Burton,et al.  Fc receptor but not complement binding is important in antibody protection against HIV , 2007, Nature.

[70]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[71]  Conrad C. Huang,et al.  Visualizing density maps with UCSF Chimera. , 2007, Journal of structural biology.

[72]  Jaap Goudsmit,et al.  Human Monoclonal Antibody Combination against SARS Coronavirus: Synergy and Coverage of Escape Mutants , 2006, PLoS medicine.

[73]  S. Harrison,et al.  Structure of SARS Coronavirus Spike Receptor-Binding Domain Complexed with Receptor , 2005, Science.

[74]  Anchi Cheng,et al.  Automated molecular microscopy: the new Leginon system. , 2005, Journal of structural biology.

[75]  Chengsheng Zhang,et al.  Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2 , 2005, The EMBO journal.

[76]  B. Murphy,et al.  An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus , 2004, Nature Medicine.

[77]  Q. Sattentau,et al.  Occupancy and mechanism in antibody-mediated neutralization of animal viruses. , 2002, The Journal of general virology.

[78]  H. Vennema,et al.  The Viral Spike Protein Is Not Involved in the Polarized Sorting of Coronaviruses in Epithelial Cells , 1998, Journal of Virology.

[79]  D. Tyrrell,et al.  The time course of the immune response to experimental coronavirus infection of man , 1990, Epidemiology and Infection.

[80]  K. Callow Effect of specific humoral immunity and some non-specific factors on resistance of volunteers to respiratory coronavirus infection , 1985, Journal of Hygiene.

[81]  S. Reed The behaviour of recent isolates of human respiratory coronavirus in vitro and in volunteers: Evidence of heterogeneity among 229E‐related strains , 2005, Journal of medical virology.