Microwave Imaging of Parallel Perfectly Conducting Cylinders Using Real-Coded Genetic Algorithm Coupled With Newton-Kantorivitch Method - Abstract

Microwave imaging of parallel perfectly conducting cylinders using scattering data with or without the effect of random noise is considered in this paper. A novel algorithm, the real-coded genetic algorithm coupled with Newton-Kantorivitch method (RGA-NKM) is proposed to deal with it with significantly improved performance. The main idea of the RGA-NKM is to perform a Newton-Kantorivitch type search for the local optimum after the genetic operations in each genetic evolution. Numerical results and comparisons with both real-coded genetic algorithm (RGA) and Newton-Kantorivitch method (NKM) demonstrate that although the simplicity of RGA is lost, the search ability is greatly improved and the convergence is sped up significantly while those merits of RGA such as high level of robustness, versatility and insensitiveness to ill-posedness are retained.

[1]  Qing Huo Liu,et al.  Inversion of induction tool measurements using the distorted Born iterative method and CG-FFHT , 1994, IEEE Trans. Geosci. Remote. Sens..

[2]  A. Devaney Nonuniqueness in the inverse scattering problem , 1978 .

[3]  A. G. Tijhuis,et al.  Electromagnetic inverse profiling: Theory and numerical implementation , 1987 .

[4]  P. M. van den Berg,et al.  An extended range‐modified gradient technique for profile inversion , 1993 .

[5]  A. Tarantola,et al.  Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .

[6]  L. Jofre,et al.  Microwave Diffraction Tomography for Biomedical Applications , 1982 .

[7]  Alfred K. Louis,et al.  Medical imaging: state of the art and future development , 1992 .

[8]  C. Chiu,et al.  Image reconstruction of a perfectly conducting cylinder by the genetic algorithm , 1996 .

[9]  Y. M. Wang,et al.  Limited‐Angle inverse scattering problems and their applications for geophysical explorations , 1990, Int. J. Imaging Syst. Technol..

[10]  Anyong Qing,et al.  Shape reconstruction of a perfectly conducting cylinder using real-coded genetic algorithm , 1999 .

[11]  David Isaacson,et al.  Inverse electromagnetic scattering models for sea ice , 1998, IEEE Trans. Geosci. Remote. Sens..

[12]  L. Jen,et al.  Microwave imaging of dielectric cylinder in layered media , 1997 .

[13]  Kenneth P. Bube,et al.  The One-Dimensional Inverse Problem of Reflection Seismology , 1983 .

[14]  N. Bojarski,et al.  A survey of the physical optics inverse scattering identity , 1982 .

[15]  Robert Burridge,et al.  The Gelfand-Levitan, the Marchenko, and the Gopinath-Sondhi integral equations of inverse scattering theory, regarded in the context of inverse impulse-response problems , 1980 .

[16]  Takashi Takenaka,et al.  Image Reconstruction of Two-Dimensional Impenetrable Objects Using Genetic Algorithm , 1999 .

[17]  Weng Cho Chew,et al.  Nonlinear two-dimensional velocity profile inversion using time domain data , 1992, IEEE Trans. Geosci. Remote. Sens..

[18]  Anyong Qing,et al.  Microwave imaging of parallel perfectly conducting cylinders using real-coded genetic algorithm , 1999 .

[19]  Roger F. Harrington,et al.  Field computation by moment methods , 1968 .

[20]  Raj Mittra,et al.  On Some Inverse Methods in Electromagnetics , 1987 .

[21]  W.C. Chew,et al.  Microwave imaging of multiple conducting cylinders using local shape functions , 1992, IEEE Microwave and Guided Wave Letters.

[22]  T. Sarkar,et al.  Some mathematical considerations in dealing with the inverse problem , 1981 .

[23]  Hao Wang,et al.  Introduction to Genetic Algorithms in Electromagnetics , 1995 .

[24]  L. E. Larsen,et al.  Limitations of Imaging with First-Order Diffraction Tomography , 1984 .

[25]  Weng Cho Chew,et al.  Time-domain inverse scattering using the local shape function (LSF) method , 1993 .

[26]  Fengchao Xiao,et al.  Microwave Imaging of Perfectly Conducting Cylinders from Real Data by Micro Genetic Algorithm Coupled with Deterministic Method , 1998 .

[27]  Chien-Ching Chiu,et al.  Microwave imaging of multiple conducting cylinders , 1992 .

[28]  Yilong Lu,et al.  Array failure correction with a genetic algorithm , 1999 .

[29]  Randy L. Haupt,et al.  Comparison between genetic and gradient-based optimization algorithms for solving electromagnetics problems , 1995 .

[30]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[31]  S. S. Stuchly,et al.  A Solution of Electromagnetic Imaging Using Pseudoinverse Transformation , 1984, IEEE Transactions on Medical Imaging.

[32]  Qing Huo Liu,et al.  Nonlinear inversion of electrode-type resistivity measurements , 1994, IEEE Trans. Geosci. Remote. Sens..

[33]  K. Paulsen,et al.  Near-field microwave imaging of biologically-based materials using a monopole transceiver system , 1998 .

[34]  P. M. van den Berg,et al.  Nonlinear inversion in induction logging using the modified gradient method , 1995 .

[35]  Anyong Qing,et al.  Microwave imaging of two-dimensional perfectly conducting objects using real-coded genetic algorithm , 1998 .

[36]  P. M. Berg,et al.  A modified gradient method for two-dimensional problems in tomography , 1992 .

[37]  F. Hettlich,et al.  Two methods for solving an inverse conductive scattering problem , 1994 .

[38]  R. Lewis Physical optics inverse diffraction , 1969 .

[39]  Peter Monk,et al.  A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region II , 1986 .

[40]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[41]  George N. Balanis,et al.  The Plasma Inverse Problem , 1972 .

[42]  L. Jen,et al.  A Novel Method for Microwave Imaging of Dielectric Cylinder in Layered Media , 1997 .

[43]  Eric Michielssen,et al.  Genetic algorithm optimization applied to electromagnetics: a review , 1997 .

[44]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[45]  Weng Cho Chew,et al.  Inverse scattering of Hz waves using local shape‐function imaging: A T‐matrix formulation , 1994, Int. J. Imaging Syst. Technol..

[46]  W. Chew Waves and Fields in Inhomogeneous Media , 1990 .

[47]  Nabil H. Farhat Microwave diversity imaging and automated target identification based on models of neural networks , 1989 .

[48]  T. Habashy,et al.  A generalized Gel'fand-Levitan-Marchenko integral equation , 1991 .

[49]  Raj Mittra,et al.  Optimal multilayer filter design using real coded genetic algorithms , 1992 .

[50]  L. Peters,et al.  Improved performance of a subsurface radar target identification system through antenna design , 1981 .

[51]  W. Chew,et al.  Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method. , 1990, IEEE transactions on medical imaging.

[52]  Weng Cho Chew,et al.  Microwave inverse scattering /spl minus/ local shape function imaging for improved resolution of strong scatterers , 1994 .

[53]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .