Solvation effects in SINDO1: Application to organic molecules

The polarizable continuum model of Miertus et al. was implemented in the semiempirical molecular orbital method SINDO1. A fast and precise method for the calculation of solvation energies is achieved based on isodensity surfaces for the cavity surface and on approximated electrostatic potentials. The calculated solvation energies in water agree well with experimental and other calculated data. © 1997 by John Wiley & Sons, Inc.

[1]  Jacopo Tomasi,et al.  Electrostatic interaction of a solute with a continuum. Improved description of the cavity and of the surface cavity bound charge distribution. , 1987 .

[2]  Benny G. Johnson,et al.  Computing molecular electrostatic potentials with the PRISM algorithm , 1993 .

[3]  Jacopo Tomasi,et al.  Evaluation of the dispersion contribution to the solvation energy. A simple computational model in the continuum approximation , 1989 .

[4]  M. Aguilar,et al.  Solute-solvent interactions. a simple procedure for constructing the solvent cavity for retaining a molecular solute , 1989 .

[5]  R. Pierotti,et al.  A scaled particle theory of aqueous and nonaqueous solutions , 1976 .

[6]  F. Javier Luque,et al.  Development of optimized MST/SCRF methods for semiempirical calculations: The MNDO and PM3 Hamiltonians , 1995, J. Comput. Chem..

[7]  Vincenzo Mollica,et al.  Group contributions to the thermodynamic properties of non-ionic organic solutes in dilute aqueous solution , 1981 .

[8]  Mati Karelson,et al.  Theoretical treatment of solvent effects on electronic spectroscopy , 1992 .

[9]  C. Cramer,et al.  General parameterized SCF model for free energies of solvation in aqueous solution , 1991 .

[10]  D. D. Yue,et al.  Theory of Electric Polarization , 1974 .

[11]  Timothy Clark,et al.  A numerical self-consistent reaction field (SCRF) model for ground and excited states in NDDO-based methods , 1993 .

[12]  Karl Jug,et al.  SINDO1. A semiempirical SCF MO method for molecular binding energy and geometry I. Approximations and parametrization , 1980 .

[13]  The influence of the basis set on the evaluation of conformational energies for small organic solutes in aqueous solutions , 1986 .

[14]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[15]  M. W. Wong,et al.  Solvent effects. IV: Effect of solvent on the E/Z energy difference for methyl formate and methyl acetate , 1993 .

[16]  F. Javier Luque,et al.  A new scaling procedure to correct semiempirical MEP and MEP-derived properties , 1993, J. Comput. Aided Mol. Des..

[17]  George P. Ford,et al.  Incorporation of hydration effects within the semiempirical molecular orbital framework. AM1 and MNDO results for neutral molecules, cations, anions, and reacting systems , 1992 .

[18]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[19]  Approximation of molecular electrostatic potentials , 1993 .

[20]  F M Richards,et al.  Areas, volumes, packing and protein structure. , 1977, Annual review of biophysics and bioengineering.

[21]  Iñaki Tuñón,et al.  GEPOL: An improved description of molecular surfaces. III. A new algorithm for the computation of a solvent‐excluding surface , 1994, J. Comput. Chem..

[22]  Kenneth B. Wiberg,et al.  Solvent effects. 1. The mediation of electrostatic effects by solvents , 1991 .

[23]  Jacopo Tomasi,et al.  Theoretical determination of the gibbs energy of solution and transfer between immiscible solvents, with comments on the dynamics of phase transfer , 1990 .

[24]  R. Parr,et al.  Statistical atomic models with piecewise exponentially decaying electron densities , 1977 .

[25]  J. Tomasi,et al.  Chemical reactions in solution: modelling of the delay of solvent synchronism (dielectric friction) along the reaction path of an SN2 reaction , 1993 .

[26]  J. Valleau,et al.  A Guide to Monte Carlo for Statistical Mechanics: 2. Byways , 1977 .

[27]  Daniel Rinaldi,et al.  Polarisabilites moléculaires et effet diélectrique de milieu à l'état liquide. Étude théorique de la molécule d'eau et de ses diméres , 1973 .

[28]  Raymond A. Poirier,et al.  Cumulative atomic multipole representation of the molecular charge distribution and its basis set dependence , 1983 .

[29]  J. Tomasi,et al.  Dispersion and repulsion contributions to the solvation energy: Refinements to a simple computational model in the continuum approximation , 1991 .

[30]  Bruce J. Berne,et al.  Molecular Dynamics Methods: Continuous Potentials , 1977 .

[31]  R. Bonaccorsi,et al.  Ab initio evaluation of absorption and emission transitions for molecular solutes, including separate consideration of orientational and inductive solvent effects , 1983 .

[32]  T. Fox,et al.  On the cavity model for solvent shifts of excited states. A critical appraisal , 1992 .

[33]  Karl Jug,et al.  Development and parametrization of sindo1 for second‐row elements , 1987 .

[34]  D. Rinaldi,et al.  Theoretical study of simple push–pull ethylenes in solution , 1991 .

[35]  Jacopo Tomasi,et al.  Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent , 1994 .

[36]  Minoru Sakurai,et al.  A semi-empirical methodology applicable to the accurate calculation of hydration enthalpy of organic molecules , 1992 .

[37]  Orlando Tapia,et al.  Self-consistent reaction field theory of solvent effects , 1975 .

[38]  J. Murray,et al.  Electrostatic potentials of some dibenzo-p-dioxins in relation to their biological activities , 1987 .

[39]  J. Tomasi,et al.  Molecular reactivity in solution. Modelling of the effects of the solvent and of its stochastic fluctuation on an SN2 reaction , 1992 .

[40]  Peter Politzer,et al.  Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions , 1992 .

[41]  Wolfgang Heiden,et al.  Fast generation of molecular surfaces from 3D data fields with an enhanced “marching cube” algorithm , 1993, J. Comput. Chem..

[42]  F. J. Luque,et al.  An optimized AM1/MST method for the MST‐SCRF representation of solvated systems , 1994, J. Comput. Chem..

[43]  F. Javier Luque,et al.  Comparison of 6‐31G*‐based MST/SCRF and FEP evaluations of the free energies of hydration for small neutral molecules , 1993, J. Comput. Chem..

[44]  Karl Jug,et al.  Extension of SINDO1 to transition metal compounds , 1992 .

[45]  P. Claverie,et al.  Theoretical conformational study of carotenoporphyrins related to photophysical properties , 1987 .

[46]  R. Bonaccorsi,et al.  On the free energy changes of a solution in light absorption or emission processes , 1983 .

[47]  R. Ornstein,et al.  Cumulative atomic multipole moments complement any atomic charge model to obtain more accurate electrostatic properties , 1992, Journal of computational chemistry.