Late Neoarchean–Paleoproterozoic arc-continent accretion along the Khondalite Belt, Western Block, North China Craton: Insights from granitoid rocks of the Daqingshan–Wulashan area

[1]  F. Wang,et al.  Anatectic record and P–T path evolution of metapelites from the Wulashan Complex, Khondalite Belt, North China Craton , 2017 .

[2]  M. Santosh,et al.  Petrology, phase equilibria and monazite geochronology of granulite-facies metapelites from deep drill cores in the Ordos Block of the North China Craton , 2016 .

[3]  P. Liu,et al.  P–T–t constraints of the Barrovian-type metamorphic series in the Khondalite belt of the North China Craton: Evidence from phase equilibria modeling and zircon U–Pb geochronology , 2016 .

[4]  C. Yin,et al.  Application of the revised Ti-in-zircon thermometer and SIMS zircon U-Pb dating of high-pressure pelitic granulites from the Qianlishan-Helanshan Complex of the Khondalite Belt, North China Craton , 2016 .

[5]  M. Santosh,et al.  Zircon U–Pb ages of Paleoproterozoic mafic granulites from the Huai’an terrane, North China Craton (NCC): Implications for timing of cratonization and crustal evolution history , 2016 .

[6]  Jinglan Luo,et al.  Archean-Paleoproterozoic crustal evolution of the Ordos Block in the North China Craton: Constraints from zircon U–Pb geochronology and Hf isotopes for gneissic granitoids of the basement , 2015 .

[7]  F. Wang,et al.  Silica-undersaturated spinel granulites in the Daqingshan complex of the Khondalite Belt, North China Craton: Petrology and quantitative P–T–X constraints , 2015 .

[8]  M. Zhai,et al.  Neoarchean metagabbro and charnockite in the Yinshan block, western North China Craton: Petrogenesis and tectonic implications , 2014 .

[9]  Lei Zhao,et al.  Paleoproterozoic granulites from the Xinghe graphite mine, North China Craton: Geology, zircon U–Pb geochronology and implications for the timing of deformation, mineralization and metamorphism , 2014 .

[10]  D. Wyman,et al.  Paleoproterozoic S-type granites in the Helanshan Complex, Khondalite Belt, North China Craton: Implications for rapid sediment recycling during slab break-off , 2014 .

[11]  Zhenhong Li,et al.  Late Paleoproterozoic medium-P high grade metamorphism of basement rocks beneath the northern margin of the Ordos Basin, NW China: Petrology, phase equilibrium modelling and U–Pb geochronology , 2014 .

[12]  Jian-Hui Liu,et al.  Multiple mafic magmatic and high-grade metamorphic events revealed by zircons from meta-mafic rocks in the Daqingshan–Wulashan Complex of the Khondalite Belt, North China Craton , 2014 .

[13]  Dunyi Liu,et al.  Earliest Paleoproterozoic supracrustal rocks in the North China Craton recognized from the Daqingshan area of the Khondalite Belt: Constraints on craton evolution , 2014 .

[14]  C. Yin,et al.  Metamorphism and partial melting of high-pressure pelitic granulites from the Qianlishan Complex: Constraints on the tectonic evolution of the Khondalite Belt in the North China Craton , 2014 .

[15]  Fang Wang,et al.  Metamorphic P-T path and tectonic implications of pelitic granulites from the Daqingshan Complex of the Khondalite Belt, North China Craton , 2014 .

[16]  Jing-hui Guo,et al.  Geochronology and trace element geochemistry of zircon, monazite and garnet from the garnetite and/or associated other high-grade rocks: Implications for Palaeoproterozoic tectonothermal evolution of the Khondalite Belt, North China Craton , 2013 .

[17]  Dunyi Liu,et al.  Palaeoproterozoic episodic magmatism and high‐grade metamorphism in the North China Craton: evidence from SHRIMP zircon dating of magmatic suites in the Daqingshan area , 2013 .

[18]  B. Windley,et al.  New Constraints from Garnetite on the P–T Path of the Khondalite Belt: Implications for the Tectonic Evolution of the North China Craton , 2013 .

[19]  Dunyi Liu,et al.  Is the Ordos Block Archean or Paleoproterozoic in age? Implications for the Precambrian evolution of the North China Craton , 2013, American Journal of Science.

[20]  Guochun Zhao,et al.  Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications , 2013 .

[21]  Dunyi Liu,et al.  Paleoproterozoic accretionary orogenesis in the North China Craton: A SHRIMP zircon study , 2013 .

[22]  L. Jian Zircon U-Pb chronology, geochemistry and their petrogenesis of Early Paleoproterozoic granitoid gneisses in Ulashan area, North China Craton. , 2013 .

[23]  L. Ping Geochronological and geochemical study of the Lijiazi mafic granulites from the Daqingshan-Wulashan metamorphic complex, the central Khondalite Belt in the North China Craton. , 2013 .

[24]  Zhenhong Li,et al.  SHRIMP U-Pb zircon dating of the Ordos Basin basement and its tectonic significance , 2013 .

[25]  Dunyi Liu,et al.  Episodic Paleoproterozoic (~2.45, ~1.95 and ~1.85 Ga) mafic magmatism and associated high temperature metamorphism in the Daqingshan area, North China Craton: SHRIMP zircon U-Pb dating and whole-rock geochemistry , 2013 .

[26]  Xian‐Hua Li,et al.  Integrated in situ zircon U–Pb age and Hf–O isotopes for the Helanshan khondalites in North China Craton: Juvenile crustal materials deposited in active or passive continental margin? , 2012 .

[27]  Q. Zhang,et al.  Episodic mantle melting-crustal reworking in the late Neoarchean of the northwestern North China Craton: Zircon ages of magmatic and metamorphic rocks from the Yinshan Block , 2012 .

[28]  B. Windley,et al.  UHT sapphirine granulite metamorphism at 1.93–1.92 Ga caused by gabbronorite intrusions: Implications for tectonic evolution of the northern margin of the North China Craton , 2012 .

[29]  M. Santosh,et al.  Paleoproterozoic ultrahigh-temperature granulites in the North China Craton: Implications for tectonic models on extreme crustal metamorphism , 2012 .

[30]  Peter A. Cawood,et al.  Amalgamation of the North China Craton: Key issues and discussion , 2012 .

[31]  Dunyi Liu,et al.  Decoding multiple tectonothermal events in zircons from single rock samples: SHRIMP zircon U–Pb data from the late Neoarchean rocks of Daqingshan, North China Craton , 2012 .

[32]  M. Santosh,et al.  Paleoproterozoic granulites from Heling'er: Implications for regional ultrahigh-temperature metamorphism in the North China Craton , 2012 .

[33]  B. Windley,et al.  Genesis of the Hengling magmatic belt in the North China Craton: Implications for Paleoproterozoic tectonics , 2012 .

[34]  Xu-Ping Li,et al.  Geochronology of khondalite-series rocks of the Jining Complex: confirmation of depositional age and tectonometamorphic evolution of the North China craton , 2011 .

[35]  M. Zhai Cratonization and the Ancient North China Continent: A summary and review , 2011 .

[36]  M. Santosh,et al.  Geochronology and petrogenesis of Neoarchean potassic meta-granites from Huai'an Complex: Implications for the evolution of the North China Craton , 2011 .

[37]  M. Santosh,et al.  The early Precambrian odyssey of the North China Craton: A synoptic overview , 2011 .

[38]  T. Kusky Geophysical and geological tests of tectonic models of the North China Craton , 2011 .

[39]  B. Windley,et al.  Halaqin volcano-sedimentary succession in the central-northern margin of the North China Craton: Products of Late Paleoproterozoic ridge subduction , 2011 .

[40]  T. Kusky Comparison of results of recent seismic profiles with tectonic models of the North China craton , 2011 .

[41]  Guochun Zhao,et al.  U–Pb and Hf isotopic study of zircons of the Helanshan Complex: Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton , 2011 .

[42]  Jing-hui Guo,et al.  Application of the two-feldspar geothermometer to ultrahigh-temperature (UHT) rocks in the Khondalite belt, North China craton and its implications , 2011 .

[43]  F. Wang,et al.  Petrology and metamorphism of khondalites from the Jining complex, North China craton , 2011 .

[44]  W. Bleeker,et al.  Paleoproterozoic gabbronoritic and granitic magmatism in the northern margin of the North China craton: Evidence of crust–mantle interaction , 2010 .

[45]  Guochun Zhao,et al.  Helanshan high-pressure pelitic granulites: petrological evidence for collision event in the Western Block of the North China Craton , 2010 .

[46]  M. Zhai,et al.  Precambrian key tectonic events and evolution of the North China craton , 2010 .

[47]  T. Kusky,et al.  Mantle dynamics of the Paleoproterozoic North China Craton: A perspective based on seismic tomography , 2010 .

[48]  M. Santosh,et al.  First application of the revised Ti-in-zircon geothermometer to Paleoproterozoic ultrahigh-temperature granulites of Tuguiwula, Inner Mongolia, North China Craton , 2010 .

[49]  Guochun Zhao,et al.  LA-ICP-MS U-Pb zircon ages of the Qianlishan Complex: Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton , 2009 .

[50]  Dunyi Liu,et al.  Anatomy of Zircons from an Ultrahot Orogen: The Amalgamation of the North China Craton within the Supercontinent Columbia , 2009, The Journal of Geology.

[51]  M. Santosh,et al.  Counterclockwise exhumation of a hot orogen: The Paleoproterozoic ultrahigh-temperature granulites in the North China Craton , 2009 .

[52]  Zhou Xi Metamorphic age of the khondalite series in the Helanshan region: Constraints on the evolution of the western block in the North China Craton. , 2009 .

[53]  Peter A. Cawood,et al.  Accretionary orogens through Earth history , 2009 .

[54]  Yue-heng Yang,et al.  The Precambrian Khondalite Belt in the Daqingshan area, North China Craton: evidence for multiple metamorphic events in the Palaeoproterozoic era , 2009 .

[55]  M. Brown,et al.  Metamorphic patterns in orogenic systems and the geological record , 2009 .

[56]  S. Liu,et al.  Ultrahigh temperature metamorphism of Tuguiwula khondalite belt, Inner Mongolia; metamorphic reaction texture and P-T indication , 2008 .

[57]  Guochun Zhao,et al.  Paleoproterozoic crustal growth in the Western Block of the North China Craton: Evidence from detrital zircon Hf and whole rock Sr-nd isotopic compositions of the Khondalites from the Jining Complex , 2008, American Journal of Science.

[58]  Dunyi Liu,et al.  Paleoproterozoic crustally derived carbonate-rich magmatic rocks from the Daqinshan area, North China Craton: Geological, petrographical, geochronological and geochemical (Hf, Nd, O and C) evidence , 2008, American Journal of Science.

[59]  S. Wilde,et al.  Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton: Evidence from SHRIMP U–Pb zircon geochronology , 2007 .

[60]  T. Kusky,et al.  The Paleoproterozoic North Hebei Orogen: North China craton's collisional suture with the Columbia supercontinent , 2007 .

[61]  M. Santosh,et al.  Discovery of sapphirine-bearing Mg–Al granulites in the North China Craton: Implications for Paleoproterozoic ultrahigh temperature metamorphism , 2007 .

[62]  Wu Chang-hua Meta-Sedimentary Rocks and Tectonic Division of the North China Craton , 2007 .

[63]  Z. Tian,et al.  Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. , 2007 .

[64]  Yang Zhensheng,et al.  Structure of metamorphic strata of the khondalite series in the Daqingshan-Wulashan area, central Inner Mongolia, China, and their geodynamic implications , 2007 .

[65]  C. Key,et al.  Lu-Hf isotopic systematics and their applications in petrology , 2007 .

[66]  M. Santosh,et al.  Extreme crustal metamorphism during Columbia supercontinent assembly: Evidence from North China Craton , 2006 .

[67]  M. Brown,et al.  Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean , 2006 .

[68]  Dunyi Liu,et al.  SHRIMP U–Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event , 2006 .

[69]  W. Griffin,et al.  Trace element and isotopic composition of GJ-red zircon standard by laser ablation , 2006 .

[70]  Guochun Zhao,et al.  LA-ICP-MS U–Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance , 2006 .

[71]  Guochun Zhao,et al.  U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: Constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton , 2006 .

[72]  M. Sun,et al.  LA-ICP-MS U-Pb zircon ages of the khondalites from the Wulashan and Jining high-grade terrain in northern margin of the North China Craton:constraints on sedimentary age of the khondalite , 2006 .

[73]  Y. Amelin Meteorite Phosphates Show Constant 176Lu Decay Rate Since 4557 Million Years Ago , 2005, Science.

[74]  W. Ernst Alpine and Pacific styles of Phanerozoic mountain building: subduction‐zone petrogenesis of continental crust , 2005 .

[75]  M. Zhai,et al.  Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: Timing of Paleoproterozoic continental collision , 2005 .

[76]  S. Wilde,et al.  Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited , 2005 .

[77]  T. Kusky,et al.  Paleoproterozoic tectonic evolution of the North China Craton , 2003 .

[78]  C. Isachsen,et al.  The decay constant of 176Lu determined from Lu-Hf and U-Pb isotope systematics of terrestrial Precambrian high-temperature mafic intrusions , 2003 .

[79]  M. Zhai Palaeoproterozoic tectonic history of the North China craton: a review , 2003 .

[80]  R. Maas,et al.  Lu–Hf and Sm–Nd isotope systems in zircon , 2003 .

[81]  K. Ludwig User's Manual for Isoplot 3.00 - A Geochronological Toolkit for Microsoft Excel , 2003 .

[82]  S. Wilde,et al.  Major tectonic units of the North China Craton and their Paleoproterozoic assembly (in Chinese) , 2003 .

[83]  T. Andersen Correction of common lead in U-Pb analyses that do not report 204Pb , 2002 .

[84]  P. O'Brien,et al.  High‐pressure granulites in the Sanggan area, North China craton: metamorphic evolution, P–T paths and geotectonic significance , 2002 .

[85]  Calvin G. Barnes,et al.  A Geochemical Classification for Granitic Rocks , 2001 .

[86]  Peter A. Cawood,et al.  Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution , 2001 .

[87]  Y. Amelin,et al.  Early-middle archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains , 2000 .

[88]  W. Griffin,et al.  The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites , 2000 .

[89]  Peter A. Cawood,et al.  Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications , 1999 .

[90]  Y. Amelin,et al.  Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons , 1999, Nature.

[91]  H. Martin Adakitic magmas: modern analogues of Archaean granitoids , 1999 .

[92]  F. Albarède,et al.  The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system , 1997 .

[93]  A. Şengör,et al.  Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia , 1993, Nature.

[94]  L. Xishan,et al.  Two types of Precambrian high‐grade metamorphism, Inner Mongolia, China , 1993 .

[95]  J. Shiqin,et al.  P–T–t paths and tectonic history of an early Precambrian granulite facies terrane, Jining district, south‐east Inner Mongolia, China , 1993 .

[96]  Jinzhong Liu,et al.  The origin of khondalites: geochemical evidence from the Archean to Early Proterozoic granulite belt in the North China craton , 1992 .

[97]  J. Murphy,et al.  Supercontinent model for the contrasting character of Late Proterozoic orogenic belts , 1991 .

[98]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[99]  A. Tindle,et al.  Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks , 1984 .

[100]  F. Barker Trondhjemite: Definition, Environment and Hypotheses of Origin , 1979 .