Spitzer Observations of the z = 2.73 Lensed Lyman Break Galaxy: MS 1512–cB58

We present Spitzer infrared (IR) photometry and spectroscopy of the lensed Lyman break galaxy (LBG) MS 1512–cB58 at z = 2.73. The large (factor ~30) magnification allows for the most detailed IR study of an L*UV(z = 3) LBG to date. Broadband photometry with IRAC (3-10 μm), IRS (16 μm), and MIPS (24, 70, and 160 μm) was obtained, as well as IRS spectroscopy spanning 5.5-35 μm. A fit of stellar population models to the optical/near-IR/IRAC photometry gives a young age (~9 Myr), forming stars at ~98 M☉ yr−1, with a total stellar mass of ~109 M☉ formed thus far. The existence of an old stellar population with twice the stellar mass cannot be ruled out. IR spectral energy distribution fits to the 24 and 70 μm photometry, as well as previously obtained submillimeter/millimeter data give an intrinsic IR luminosity LIR = (1–2) × 1011 L☉ and a star formation rate (SFR) ~20-40 M☉ yr−1. The ultraviolet (UV) derived SFR is ~3-5 times higher than the SFR determined using LIR or LH α because the red UV spectral slope is significantly overpredicting the level of dust extinction. This may suggest that the assumed Calzetti starburst obscuration law is not valid in young LBGs. We detect strong line emission from polycyclic aromatic hyrdrocarbons (PAHs) at 6.2, 7.7, and 8.6 μm. The line ratios are consistent with ratios observed in both local and high-redshift starbursts. Both the PAH and rest-frame 8 μm luminosities predict the total LIR based on previously measured relations in starbursts. Finally, we do not detect the 3.3 μm PAH feature. This is marginally inconsistent with some PAH emission models, but still consistent with PAH ratios measured in many local star-forming galaxies.

[1]  D. Elbaz,et al.  IRAC Excess in Distant Star-Forming Galaxies: Tentative Evidence for the 3.3 μm Polycyclic Aromatic Hydrocarbon Feature? , 2008, 0803.3917.

[2]  D. Schaerer,et al.  3D Lyα radiation transfer II. Fitting the Lyman break galaxy MS 1512-cB58 and implications for Lyα emission in high-z starbursts , 2008, 0801.1187.

[3]  C. Kochanek,et al.  Estimating the total infrared luminosity of galaxies up to z ∼ 2 from mid- and far-infrared observations , 2007, 0712.0965.

[4]  C. Papovich,et al.  Mid-Infrared Spectroscopy of Lensed Galaxies at 1 < z < 3: The Nature of Sources Near the MIPS Confusion Limit , 2007, 0711.1902.

[5]  D. Elbaz,et al.  Mid-Infrared Spectral Diagnosis of Submillimeter Galaxies , 2007, 0711.1553.

[6]  P. Chanial,et al.  Stellar Evolutionary Effects on the Abundances of Polycyclic Aromatic Hydrocarbons and Supernova-Condensed Dust in Galaxies , 2007, 0708.0790.

[7]  J. Bernard-Salas,et al.  PAH Emission from Ultraluminous Infrared Galaxies , 2007, 0707.4190.

[8]  Mario Schweitzer,et al.  Spitzer Quasar and ULIRG Evolution Study (QUEST). II. The Spectral Energy Distributions of Palomar-Green Quasars , 2007, 0706.0818.

[9]  A. M. Swinbank,et al.  A Detailed Study of Gas and Star Formation in a Highly Magnified Lyman Break Galaxy at z = 3.07 , 2007, 0705.1721.

[10]  Oar,et al.  Dust Properties at z = 6.3 in the Host Galaxy of GRB 050904 , 2007, astro-ph/0703349.

[11]  Takao Nakagawa,et al.  A Spitzer IRS Low-Resolution Spectroscopic Search for Buried AGNs in Nearby Ultraluminous Infrared Galaxies: A Constraint on Geometry between Energy Sources and Dust , 2007, astro-ph/0702136.

[12]  A. Pope,et al.  Measuring PAH Emission in Ultradeep Spitzer IRS Spectroscopy of High-Redshift IR-Luminous Galaxies , 2007, astro-ph/0701409.

[13]  J. Surace,et al.  Spitzer Mid-Infrared Spectroscopy of Infrared Luminous Galaxies at z ~ 2. I. The Spectra , 2006, astro-ph/0612297.

[14]  J. Frieman,et al.  The 8 O’Clock Arc: A Serendipitous Discovery of a Strongly Lensed Lyman Break Galaxy in the SDSS DR4 Imaging Data , 2006, astro-ph/0611138.

[15]  B. Draine,et al.  Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era , 2006, astro-ph/0608003.

[16]  J. Bernard-Salas,et al.  The Mid-Infrared Properties of Starburst Galaxies from Spitzer-IRS Spectroscopy , 2006 .

[17]  A. M. Swinbank,et al.  A Very Bright, Highly Magnified Lyman Break Galaxy at z = 3.07 , 2006, astro-ph/0611486.

[18]  I. Smail,et al.  Mid-Infrared Spectroscopy of High-Redshift Submillimeter Galaxies: First Results , 2006, astro-ph/0610915.

[19]  C. Joblin,et al.  Theoretical evaluation of PAH dications properties , 2006, astro-ph/0609681.

[20]  C. Conselice,et al.  AEGIS: Infrared Spectroscopy of an Infrared-luminous Lyman Break Galaxy at z = 3.01 , 2006, astro-ph/0608456.

[21]  D. Elbaz,et al.  Spitzer 70 Micron Source Counts in GOODS-North , 2006, astro-ph/0606676.

[22]  Caltech,et al.  The Hubble Deep Field-North SCUBA Super-map - IV. Characterizing submillimetre galaxies using deep Spitzer imaging , 2006, astro-ph/0605573.

[23]  M. Elitzur,et al.  Spitzer IRS Spectra of a Large Sample of Seyfert Galaxies: A Variety of Infrared Spectral Energy Distributions in the Local Active Galactic Nucleus Population , 2006, astro-ph/0604222.

[24]  Dario Fadda,et al.  Star Formation and Extinction in Redshift z~2 Galaxies: Inferences from Spitzer MIPS Observations , 2006, astro-ph/0602596.

[25]  M. Imanishi Infrared 3-4 μm Spectroscopy of Infrared Luminous Galaxies with Possible Signatures of Obscured Active Galactic Nuclei , 2006 .

[26]  C. Steidel,et al.  A Census of Optical and Near-Infrared Selected Star-forming and Passively Evolving Galaxies at Redshift z ~ 2 , 2005, astro-ph/0507264.

[27]  J. Surace,et al.  Accepted for Publication in the Astrophysical Journal Spitzer Detection of PAH and Silicate Dust Features in the Mid-Infrared Spectra of z ∼ 2 Ultraluminous Infrared Galaxies , 2005 .

[28]  Jia-Sheng Huang,et al.  Ultraviolet to Mid-Infrared Observations of Star-forming Galaxies at z ~ 2: Stellar Masses and Stellar Populations , 2005, astro-ph/0503485.

[29]  E. Peeters,et al.  Polycyclic Aromatic Hydrocarbons as a Tracer of Star Formation? , 2004 .

[30]  E. Oliva,et al.  A supernova origin for dust in a high-redshift quasar , 2004, Nature.

[31]  Paul S. Smith,et al.  The Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .

[32]  Marcia J. Rieke,et al.  Confusion of Extragalactic Sources in the Mid- and Far-Infrared: Spitzer and Beyond , 2004 .

[33]  T. Takeuchi,et al.  A dust emission model of Lyman-break galaxies , 2004, astro-ph/0407099.

[34]  E. Peeters,et al.  PAHs as a tracer of star formation , 2004, astro-ph/0406183.

[35]  Gary J. Melnick,et al.  In-flight performance and calibration of the Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[36]  M. Sauvage,et al.  Warm dust and aromatic bands as quantitative probes of star-formation activity , 2004, astro-ph/0402388.

[37]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[38]  R. Genzel,et al.  Molecular Gas in the Lensed Lyman Break Galaxy cB58 , 2002, astro-ph/0312099.

[39]  L. Ho,et al.  Detailed Structural Decomposition of Galaxy Images , 2002, astro-ph/0204182.

[40]  C. Steidel,et al.  New Observations of the Interstellar Medium in the Lyman Break Galaxy MS 1512–cB58 , 2001, astro-ph/0110637.

[41]  M. Giavalisco,et al.  The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.

[42]  D. Elbaz,et al.  Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust-enshrouded Star Formation Rate , 2001, astro-ph/0103067.

[43]  M. Sawicki The Ultraviolet-Far-Infrared Energy Budget of the Gravitationally Lensed Lyman Break Galaxy MS 1512-CB58 , 2001, astro-ph/0102208.

[44]  P. Ferrara Dust Formation in Primordial Type II Supernovae , 2000, astro-ph/0009176.

[45]  David H. Hughes,et al.  Deep Millimeter Surveys: Implications for Galaxy Formation and Evolution , 2001 .

[46]  R. Genzel,et al.  Dust emission from the lensed Lyman break galaxy cB58 , 2000, astro-ph/0104345.

[47]  H. Ferguson,et al.  The Stellar Populations and Evolution of Lyman Break Galaxies , 2000, astro-ph/0105087.

[48]  B. Draine,et al.  Infrared Emission from Interstellar Dust Ii. the Diffuse Interstellar Medium , 2000 .

[49]  G. Helou,et al.  The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths , 2000, astro-ph/0011014.

[50]  C. C. Steidel,et al.  Multiwavelength Observations of Dusty Star Formation at Low and High Redshift , 2000, astro-ph/0001126.

[51]  M. Giavalisco,et al.  The Ultraviolet Spectrum of MS 1512–cB58: An Insight into Lyman-Break Galaxies , 1999, astro-ph/9908007.

[52]  J. Kneib,et al.  The discovery of ERO counterparts to faint submillimetre galaxies , 1999, astro-ph/9905246.

[53]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[54]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[55]  C. Breuck,et al.  YOUNG UNIVERSE: GALAXY FORMATION AND EVOLUTION AT INTERMEDIATE AND HIGH REDSHIFT , 1998 .

[56]  R. Bender,et al.  The z=2.72 galaxy cB58: a gravitational fold arc lensed by the cluster MS 1512+36 , 1997, astro-ph/9706023.

[57]  D. Calzetti Reddening and star formation in starburst galaxies , 1996, astro-ph/9610184.

[58]  E. Ellingson,et al.  Optical-IR Spectral Energy Distribution of the Protogalaxy Candidate MS 1512–cB58 , 1996, astro-ph/9605159.

[59]  G. Lewis,et al.  The giant protogalaxy cB58: an artefact of gravitational lensing? , 1996, astro-ph/9605062.

[60]  R. Carlberg,et al.  A Proto-Galaxy Candidate at Z = 2.7 , 1996, astro-ph/9602121.

[61]  M. Giavalisco,et al.  Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3 , 1996, astro-ph/9602024.

[62]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[63]  Edward L. Fitzpatrick,et al.  An average interstellar extinction curve for the Large Magellanic Cloud. , 1986 .

[64]  E. Salpeter The Luminosity function and stellar evolution , 1955 .