Potential synergistic action of 19 schizophrenia risk genes in the thalamus

[1]  Giulio Tononi,et al.  Reduced sleep spindle activity point to a TRN-MD thalamus-PFC circuit dysfunction in schizophrenia , 2017, Schizophrenia Research.

[2]  A. Grace,et al.  The Nucleus Reuniens of the Midline Thalamus Gates Prefrontal-Hippocampal Modulation of Ventral Tegmental Area Dopamine Neuron Activity , 2016, The Journal of Neuroscience.

[3]  Jinwei Zhu,et al.  Mechanistic basis of MAGUK-organized complexes in synaptic development and signalling , 2016, Nature Reviews Neuroscience.

[4]  H. Steiner,et al.  Misassembly of full-length Disrupted-in-Schizophrenia 1 protein is linked to altered dopamine homeostasis and behavioral deficits , 2016, Molecular Psychiatry.

[5]  V. Calhoun,et al.  Multivariate genetic determinants of EEG oscillations in schizophrenia and psychotic bipolar disorder from the BSNIP study , 2015, Translational Psychiatry.

[6]  L. Puelles,et al.  Molecular anatomy of the thalamic complex and the underlying transcription factors , 2015, Brain Structure and Function.

[7]  T. Foster,et al.  Impaired Attention and Synaptic Senescence of the Prefrontal Cortex Involves Redox Regulation of NMDA Receptors , 2015, The Journal of Neuroscience.

[8]  M. Wilson,et al.  Delta Frequency Optogenetic Stimulation of the Thalamic Nucleus Reuniens Is Sufficient to Produce Working Memory Deficits: Relevance to Schizophrenia , 2015, Biological Psychiatry.

[9]  J. Coyle,et al.  The NMDA receptor 'glycine modulatory site' in schizophrenia: D-serine, glycine, and beyond. , 2015, Current opinion in pharmacology.

[10]  P. Fletcher,et al.  A Dopamine D2 Receptor-DISC1 Protein Complex may Contribute to Antipsychotic-Like Effects , 2014, Neuron.

[11]  Miao He,et al.  ErbB4 regulation of a thalamic reticular nucleus circuit for sensory selection , 2014, Nature Neuroscience.

[12]  Elspeth A. Bruford,et al.  Genenames.org: the HGNC resources in 2015 , 2014, Nucleic Acids Res..

[13]  C. Spencer,et al.  Biological Insights From 108 Schizophrenia-Associated Genetic Loci , 2014, Nature.

[14]  J. J. Westmoreland,et al.  Specific disruption of thalamic inputs to the auditory cortex in schizophrenia models , 2014, Science.

[15]  J. V. Van Horn,et al.  Reviewing the ketamine model for schizophrenia , 2014, Journal of psychopharmacology.

[16]  William M. Connelly,et al.  L-type calcium channel-dependent inhibitory plasticity in the thalamus , 2014, Journal of neurophysiology.

[17]  V. Crunelli,et al.  Role for T-type Ca2+ channels in sleep waves , 2014, Pflügers Archiv - European Journal of Physiology.

[18]  E. Banks,et al.  De novo mutations in schizophrenia implicate synaptic networks , 2014, Nature.

[19]  Eric S. Lander,et al.  A polygenic burden of rare disruptive mutations in schizophrenia , 2014, Nature.

[20]  V. Crunelli,et al.  Essential Thalamic Contribution to Slow Waves of Natural Sleep , 2013, The Journal of Neuroscience.

[21]  H. Ozçelik,et al.  Discovery, Validation and Characterization of Erbb4 and Nrg1 Haplotypes Using Data from Three Genome-Wide Association Studies of Schizophrenia , 2013, PloS one.

[22]  Stanislav S Zakharenko,et al.  Age-Dependent MicroRNA Control of Synaptic Plasticity in 22q11 Deletion Syndrome and Schizophrenia , 2012, The Journal of Neuroscience.

[23]  J. Krystal,et al.  Capturing the angel in "angel dust": twenty years of translational neuroscience studies of NMDA receptor antagonists in animals and humans. , 2012, Schizophrenia bulletin.

[24]  J. Lisman,et al.  NR2C in the Thalamic Reticular Nucleus; Effects of the NR2C Knockout , 2012, PloS one.

[25]  S. Snyder,et al.  Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via D-serine depletion , 2012, Molecular Psychiatry.

[26]  J. Lisman,et al.  NMDAR antagonist action in thalamus imposes δ oscillations on the hippocampus. , 2012, Journal of neurophysiology.

[27]  G. Knyazev,et al.  Neuroscience and Biobehavioral Reviews , 2012 .

[28]  S Purcell,et al.  De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia , 2011, Molecular Psychiatry.

[29]  S. Finkbeiner,et al.  Arc in synaptic plasticity: from gene to behavior , 2011, Trends in Neurosciences.

[30]  Ralf D Wimmer,et al.  The CaV3.3 calcium channel is the major sleep spindle pacemaker in thalamus , 2011, Proceedings of the National Academy of Sciences.

[31]  R. Llinás,et al.  Human Neuroscience , 2022 .

[32]  J. Castro-Fornieles,et al.  Reduced antioxidant defense in early onset first-episode psychosis: a case-control study , 2011, BMC psychiatry.

[33]  J. Lisman,et al.  A Thalamo-Hippocampal-Ventral Tegmental Area Loop May Produce the Positive Feedback that Underlies the Psychotic Break in Schizophrenia , 2010, Biological Psychiatry.

[34]  Peter J. Siekmeier,et al.  Patterns of Spontaneous Magnetoencephalographic Activity in Patients With Schizophrenia , 2010, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[35]  T. Foster,et al.  Intracellular Redox State Alters NMDA Receptor Response during Aging through Ca2+/Calmodulin-Dependent Protein Kinase II , 2010, The Journal of Neuroscience.

[36]  R. Llinás,et al.  Inhibition of NMDARs in the Nucleus Reticularis of the Thalamus Produces Delta Frequency Bursting , 2009, Front. Neural Circuits.

[37]  H. Moore,et al.  Differential targeting of the CA1 subfield of the hippocampal formation by schizophrenia and related psychotic disorders. , 2009, Archives of general psychiatry.

[38]  T. Sejnowski,et al.  Does schizophrenia arise from oxidative dysregulation of parvalbumin-interneurons in the developing cortex? , 2009, Neuropharmacology.

[39]  H. Pape,et al.  Postnatal Expression Pattern of HCN Channel Isoforms in Thalamic Neurons: Relationship to Maturation of Thalamocortical Oscillations , 2009, The Journal of Neuroscience.

[40]  S. Sponheim,et al.  Genetic and disorder-specific aspects of resting state EEG abnormalities in schizophrenia. , 2009, Schizophrenia bulletin.

[41]  E. Budygin,et al.  Increased phasic dopamine signaling in the mesolimbic pathway during social defeat in rats , 2009, Neuroscience.

[42]  P. Heggelund,et al.  Activity Patterns Govern Synapse-Specific AMPA Receptor Trafficking between Deliverable and Synaptic Pools , 2009, Neuron.

[43]  C. Cavada,et al.  Dopamine Innervation in the Thalamus: Monkey versus Rat , 2008, Cerebral cortex.

[44]  Masahiko Watanabe,et al.  T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites , 2008, Nature Neuroscience.

[45]  A. Singleton,et al.  Rare Structural Variants Disrupt Multiple Genes in Neurodevelopmental Pathways in Schizophrenia , 2008, Science.

[46]  K. Sullivan,et al.  Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromes , 2007, The Lancet.

[47]  A. Grace,et al.  Aberrant Hippocampal Activity Underlies the Dopamine Dysregulation in an Animal Model of Schizophrenia , 2007, The Journal of Neuroscience.

[48]  S. Hughes,et al.  Just a phase they're going through: The complex interaction of intrinsic high-threshold bursting and gap junctions in the generation of thalamic α and θ rhythms , 2007 .

[49]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[50]  C. Austin,et al.  Expression of disrupted-in-schizophrenia-1, a schizophrenia-associated gene, is prominent in the mouse hippocampus throughout brain development , 2004, Neuroscience.

[51]  F. Sharp,et al.  The mGlu2/3 receptor agonist LY379268 injected into cortex or thalamus decreases neuronal injury in retrosplenial cortex produced by NMDA receptor antagonist MK-801: possible implications for psychosis , 2004, Neuropharmacology.

[52]  R. Shigemoto,et al.  Immunohistochemical localization of Ih channel subunits, HCN1–4, in the rat brain , 2004, The Journal of comparative neurology.

[53]  B. Rockstroh,et al.  Source distribution of neuromagnetic slow wave activity in schizophrenic and depressive patients , 2003, Clinical Neurophysiology.

[54]  B. Rockstroh,et al.  Source distribution of neuromagnetic slow-wave activity in schizophrenic patients—effects of activation , 2003, Schizophrenia Research.

[55]  R. Behrendt Hallucinations: Synchronisation of thalamocortical γ oscillations underconstrained by sensory input , 2003, Consciousness and Cognition.

[56]  B. Rockstroh,et al.  Source distribution of neuromagnetic slow waves and MEG-delta activity in schizophrenic patients , 2001, Biological Psychiatry.

[57]  S. Siegelbaum,et al.  Molecular and Functional Heterogeneity of Hyperpolarization-Activated Pacemaker Channels in the Mouse CNS , 2000, The Journal of Neuroscience.

[58]  W. Zieglgänsberger,et al.  Differential distribution of metabotropic glutamate receptor subtype mRNAs in the thalamus of the rat , 2000, Brain Research.

[59]  S H Snyder,et al.  Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[60]  A. Grace,et al.  Dopamine Modulates the Responsivity of Mediodorsal Thalamic Cells Recorded In Vitro , 1998, The Journal of Neuroscience.

[61]  Joseph T. Coyle,et al.  The Glutamatergic Dysfunction Hypothesis for Schizophrenia , 1996, Harvard review of psychiatry.

[62]  S. Sponheim,et al.  Resting EEG in first-episode schizophrenia patients, bipolar psychosis patients, and their first-degree relatives. , 1994, Psychophysiology.

[63]  B. Emanuel,et al.  Chromosomal mapping of the human catechol-O-methyltransferase gene to 22q11.1----q11.2. , 1992, Genomics.

[64]  G. Buzsáki The thalamic clock: Emergent network properties , 1991, Neuroscience.

[65]  D. Javitt,et al.  Recent advances in the phencyclidine model of schizophrenia. , 1991, The American journal of psychiatry.

[66]  D. Paré,et al.  Short-lasting nicotinic and long-lasting muscarinic depolarizing responses of thalamocortical neurons to stimulation of mesopontine cholinergic nuclei. , 1991, Journal of neurophysiology.

[67]  R. Llinás,et al.  Ionic basis for the electro‐responsiveness and oscillatory properties of guinea‐pig thalamic neurones in vitro. , 1984, The Journal of physiology.

[68]  P. Seeman,et al.  Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. , 1975, Science.

[69]  S. Hughes,et al.  Just a phase they're going through: the complex interaction of intrinsic high-threshold bursting and gap junctions in the generation of thalamic alpha and theta rhythms. , 2007, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[70]  E. Walker,et al.  The stress cascade and schizophrenia: etiology and onset. , 2003, Schizophrenia bulletin.

[71]  S. Snyder,et al.  Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. , 1976, Science.