Context-aware sentiment propagation using LDA topic modeling on Chinese ConceptNet

A sentiment dictionary is a valuable resource in sentiment analysis research. Previous work has propagated sentiment values from existing dictionaries via semantic networks to build wide-coverage dictionaries efficiently. Unfortunately, this blind propagation method tends to incorrectly estimate sentiment values the further along the chain it goes from the seed word because it does not consider word senses in context. In this work, we propose a context-aware propagation method on Chinese ConceptNet to help resolve this issue. In our approach, we represent contexts using LDA topic modeling by generating a topic for each context. We can then assign concepts different sentiment values for different topics when propagating sentiments on Chinese ConceptNet. Our experiments on both microblog posts and drama dialogue subtitles show that our context-aware approach improves the accuracy of sentiment polarity prediction.

[1]  Maite Taboada,et al.  Lexicon-Based Methods for Sentiment Analysis , 2011, CL.

[2]  Erik Cambria,et al.  SenticNet: A Publicly Available Semantic Resource for Opinion Mining , 2010, AAAI Fall Symposium: Commonsense Knowledge.

[3]  Jane Yung-jen Hsu,et al.  Building a Graded Chinese Sentiment Dictionary Based on Commonsense Knowledge for Sentiment Analysis of Song Lyrics , 2013, J. Inf. Sci. Eng..

[4]  P. Lang Behavioral treatment and bio-behavioral assessment: computer applications , 1980 .

[5]  Boi Faltings,et al.  Acquiring Commonsense Knowledge for Sentiment Analysis through Human Computation , 2014, AAAI.

[6]  Mingliang Chen,et al.  Building emotional dictionary for sentiment analysis of online news , 2014, World Wide Web.

[7]  Jane Yung-jen Hsu,et al.  Community-based game design: experiments on social games for commonsense data collection , 2009, HCOMP '09.

[8]  M. Bradley,et al.  Affective Norms for English Words (ANEW): Instruction Manual and Affective Ratings , 1999 .

[9]  Richard Tzong-Han Tsai,et al.  Using relation selection to improve value propagation in a ConceptNet-based sentiment dictionary , 2014, Knowl. Based Syst..

[10]  Carlo Strapparava,et al.  WordNet Affect: an Affective Extension of WordNet , 2004, LREC.

[11]  Andrea Esuli,et al.  SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining , 2006, LREC.

[12]  Dragomir R. Radev,et al.  Identifying Text Polarity Using Random Walks , 2010, ACL.

[13]  Likun Qiu,et al.  Expanding Chinese Sentiment Dictionaries from Large Scale Unlabeled Corpus , 2010, PACLIC.

[14]  Yue Lu,et al.  Automatic construction of a context-aware sentiment lexicon: an optimization approach , 2011, WWW.

[15]  Xiaojun Wan,et al.  Emotion Classification in Microblog Texts Using Class Sequential Rules , 2014, AAAI.

[16]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[17]  Huey Yee Lee,et al.  Chinese Sentiment Analysis Using Maximum Entropy , 2011 .

[18]  Jane Yung-jen Hsu,et al.  Building a Concept-Level Sentiment Dictionary Based on Commonsense Knowledge , 2013, IEEE Intelligent Systems.

[19]  Houfeng Wang,et al.  Build Chinese Emotion Lexicons Using A Graph-based Algorithm and Multiple Resources , 2010, COLING.

[20]  Henry Lieberman,et al.  A model of textual affect sensing using real-world knowledge , 2003, IUI '03.

[21]  Catherine Havasi,et al.  Representing General Relational Knowledge in ConceptNet 5 , 2012, LREC.

[22]  Catherine Havasi,et al.  ConceptNet 3 : a Flexible , Multilingual Semantic Network for Common Sense Knowledge , 2007 .

[23]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.