Automatic energy conserving space–time refinement for linear dynamic structural problems

In this paper a local space–time automatic refinement method (STAR method) is developed to efficiently solve time-dependent problems using FEM techniques. The automatic process is driven by an energy or a displacement error indicator which controls the precision of the result. The STAR method solves the numerical problem on grids with different mesh size. For the Newmark schemes, a general demonstration, using the energy method, gives the interface conditions between two successive grids which is compatible with the stability of the scheme. Finally, using a linear one-dimensional example, the convergence of the method and the precision of the results are discussed. Copyright © 2005 John Wiley & Sons, Ltd.

[1]  Alain Combescure,et al.  Efficient FEM calculation with predefined precision through automatic grid refinement , 2005 .

[2]  W. Daniel A study of the stability of subcycling algorithms in structural dynamics , 1998 .

[3]  A. Brandt Multi-level adaptive technique (MLAT) for fast numerical solution to boundary value problems , 1973 .

[4]  Nils-Erik Wiberg,et al.  Implementation and adaptivity of a space-time finite element method for structural dynamics , 1998 .

[5]  Thomas J. R. Hughes,et al.  IMPLICIT-EXPLICIT FINITE ELEMENTS IN TRANSIENT ANALYSIS: IMPLEMENTATION AND NUMERICAL EXAMPLES. , 1978 .

[6]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[7]  Alain Combescure,et al.  Multi‐time‐step and two‐scale domain decomposition method for non‐linear structural dynamics , 2003 .

[8]  A. Prakash,et al.  A FETI‐based multi‐time‐step coupling method for Newmark schemes in structural dynamics , 2004 .

[9]  T. Hughes,et al.  Space-time finite element methods for elastodynamics: formulations and error estimates , 1988 .

[10]  J. Z. Zhu,et al.  The finite element method , 1977 .

[11]  William J.T. Daniel,et al.  A partial velocity approach to subcycling structural dynamics , 2003 .

[12]  Y. S. Wu,et al.  A multi-time step integration algorithm for structural dynamics based on the modified trapezoidal rule , 2000 .

[13]  Thomas J. R. Hughes,et al.  Space-time finite element methods for second-order hyperbolic equations , 1990 .

[14]  Ted Belytschko,et al.  Multi-time-step integration using nodal partitioning , 1988 .

[15]  James C. Robinson,et al.  P-ADAPTIVITY IN THE TIME DOMAIN USING MVPQ MULTIVALUE TIME-MARCHING INTEGRATORS , 1997 .

[16]  Pierre Ladevèze,et al.  Discretization error estimator for transcient dynamic simulations , 2002 .

[17]  Mark F. Adams,et al.  Evaluation of three unstructured multigrid methods on 3D finite element problems in solid mechanics , 2000 .

[18]  Thomas J. R. Hughes,et al.  Implicit-Explicit Finite Elements in Transient Analysis: Stability Theory , 1978 .

[19]  Robert L. Taylor,et al.  Parallel multigrid solvers for 3D-unstructured large deformation elasticity and plasticity finite element problems , 2000 .