Experimental Stiffness Measurement of WL-16RII Biped Walking Vehicle During Walking Operation

This paper describes an experimental method for evaluating the stiffness of a biped walking robot. A reliable procedure is proposed as based on a simplified version of Milli-CaTraSys (Milli Cassino Tracking System) with three wire encoders and two six-axis force-torque sensors. This measures both applied wrench and resulting compliant displacements. Experiments conducted on a prototype of the biped walking vehicle WL-16RII (Waseda Leg - No. 16 Refined II) under different dynamic conditions provided useful information for both design and control.

[1]  Atsuo Takanishi,et al.  Walking up and down stairs carrying a human by a biped locomotor with parallel mechanism , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[3]  Atsuo Takanishi,et al.  Support torque reduction mechanism for biped locomotor with parallel mechanism , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[4]  Atsuo Takanishi,et al.  Realization of dynamic human-carrying walking by a biped locomotor , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[5]  Shigeo Hirose,et al.  Development of walking manipulator with versatile locomotion , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[6]  Atsuo Takanishi,et al.  Control and experiments of a multi-purpose bipedal locomotor with parallel mechanism , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[7]  Marco Ceccarelli,et al.  Stiffness performance estimation for biped locomotor WL-15 , 2003, Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003).

[8]  M. Ceccarelli,et al.  A stiffness analysis for CaPaMan (Cassino Parallel Manipulator) , 2002 .

[9]  Kensuke Takita,et al.  Fundamental mechanism of dinosaur-like robot TITRUS-II utilizing coupled drive , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[10]  E. Rivin,et al.  Stiffness and Damping in Mechanical Design , 1999 .

[11]  L. W. Tsai,et al.  Robot Analysis: The Mechanics of Serial and Parallel Ma-nipulators , 1999 .

[12]  Joseph Duffy,et al.  Statics and Kinematics with Applications to Robotics , 1996 .

[13]  Donald A. Streit,et al.  Configuration dependent stiffness of the PUMA 560 manipulator: Analytical and experimental results , 1995 .

[14]  Mingjun Xie,et al.  Flexible Multibody System Dynamics: Theory And Applications , 1993 .

[15]  Clément Gosselin,et al.  Stiffness mapping for parallel manipulators , 1990, IEEE Trans. Robotics Autom..

[16]  Shimon Y. Nof,et al.  International Encyclopedia of Robotics: Applications and Automation , 1988 .

[17]  E. B. Magrab,et al.  A General Procedure to Evaluate Robot Positioning Errors , 1987 .

[18]  Bijan Shirinzadeh,et al.  Exact stiffness analysis and mapping for a 3-SPS+S parallel manipulator , 2003 .

[19]  Atsuo Takanishi,et al.  Balance and impedance control for biped humanoid robot locomotion , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[20]  Joseph Duffy,et al.  Statics and kinematics with applications to robotics: The stiffness mapping for a parallel manipulator , 1996 .

[21]  H. Van Brussel,et al.  Evaluation and testing of robots , 1990 .