暂无分享,去创建一个
Bernhard Schölkopf | Kenji Fukumizu | Arthur Gretton | Krikamol Muandet | Bharath K. Sriperumbudur | B. Schölkopf | K. Fukumizu | A. Gretton | Krikamol Muandet | B. Scholkopf
[1] Kenji Fukumizu,et al. Universality, Characteristic Kernels and RKHS Embedding of Measures , 2010, J. Mach. Learn. Res..
[2] B. Silverman,et al. Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .
[3] Shigeo Abe DrEng. Pattern Classification , 2001, Springer London.
[4] Guy Lever,et al. Conditional mean embeddings as regressors , 2012, ICML.
[5] Le Song,et al. Kernel Embeddings of Latent Tree Graphical Models , 2011, NIPS.
[6] Nello Cristianini,et al. Kernel Methods for Pattern Analysis , 2004 .
[7] Alexander J. Smola,et al. Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.
[8] Korbinian Strimmer,et al. Entropy Inference and the James-Stein Estimator, with Application to Nonlinear Gene Association Networks , 2008, J. Mach. Learn. Res..
[9] B. Efron,et al. Stein's Estimation Rule and Its Competitors- An Empirical Bayes Approach , 1973 .
[10] Andreas Christmann,et al. Universal Kernels on Non-Standard Input Spaces , 2010, NIPS.
[11] Bernhard Schölkopf,et al. Kernel Mean Estimation and Stein Effect , 2013, ICML.
[12] Le Song,et al. Robust Low Rank Kernel Embeddings of Multivariate Distributions , 2013, NIPS.
[13] Nicolas Privault,et al. Stein estimation for the drift of Gaussian processes using the Malliavin calculus , 2008, 0811.1153.
[14] Le Song,et al. Hilbert Space Embeddings of Hidden Markov Models , 2010, ICML.
[15] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[16] N. Dinculeanu. Vector Integration and Stochastic Integration in Banach Spaces , 2000, Oxford Handbooks Online.
[17] L. Wasserman. All of Nonparametric Statistics , 2005 .
[18] Bernhard Schölkopf,et al. One-Class Support Measure Machines for Group Anomaly Detection , 2013, UAI.
[19] Lorenzo Rosasco,et al. On regularization algorithms in learning theory , 2007, J. Complex..
[20] Felipe Cucker,et al. On the mathematical foundations of learning , 2001 .
[21] Massimiliano Pontil,et al. Multi-task Averaging via Task Clustering , 2013, SIMBAD.
[22] M. Bock. Minimax Estimators of the Mean of a Multivariate Normal Distribution , 1975 .
[23] Le Song,et al. A Hilbert Space Embedding for Distributions , 2007, Discovery Science.
[24] John Shawe-Taylor,et al. Smooth Operators , 2013, ICML.
[25] Le Song,et al. Kernel Bayes' Rule , 2010, NIPS.
[26] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[27] Inderjit S. Dhillon,et al. Kernel k-means: spectral clustering and normalized cuts , 2004, KDD.
[28] J. Berger. Minimax Estimation of Location Vectors for a Wide Class of Densities , 1975 .
[29] Bernhard Schölkopf,et al. Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.
[30] Maya R. Gupta,et al. Multi-Task Averaging , 2012, NIPS.
[31] Marc G. Genton,et al. Classes of Kernels for Machine Learning: A Statistics Perspective , 2002, J. Mach. Learn. Res..
[32] Bernhard Schölkopf,et al. A Generalized Representer Theorem , 2001, COLT/EuroCOLT.
[33] Clayton D. Scott,et al. Robust kernel density estimation , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.
[34] L. Shepp,et al. Admissibility as a Touchstone , 1987 .
[35] Bernhard Schölkopf,et al. Learning from Distributions via Support Measure Machines , 2012, NIPS.
[36] J. Retherford. Review: J. Diestel and J. J. Uhl, Jr., Vector measures , 1978 .
[37] Andreas Christmann,et al. Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.
[38] Larry Wasserman,et al. All of Nonparametric Statistics (Springer Texts in Statistics) , 2006 .
[39] Aapo Hyvärinen,et al. Density Estimation in Infinite Dimensional Exponential Families , 2013, J. Mach. Learn. Res..
[40] Le Song,et al. Kernel Belief Propagation , 2011, AISTATS.
[41] B. Efron,et al. Combining Possibly Related Estimation Problems , 1973 .
[42] Bernhard Schölkopf,et al. Hilbert Space Embeddings and Metrics on Probability Measures , 2009, J. Mach. Learn. Res..
[43] J. Neyman,et al. INADMISSIBILITY OF THE USUAL ESTIMATOR FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION , 2005 .
[44] Bernhard Schölkopf,et al. Kernel Mean Estimation via Spectral Filtering , 2014, NIPS.
[45] Bernhard Schölkopf,et al. Injective Hilbert Space Embeddings of Probability Measures , 2008, COLT.
[46] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[47] David G. Stork,et al. Pattern classification, 2nd Edition , 2000 .
[48] Gunnar Rätsch,et al. Kernel PCA and De-Noising in Feature Spaces , 1998, NIPS.
[49] Alexander J. Smola,et al. Unifying Divergence Minimization and Statistical Inference Via Convex Duality , 2006, COLT.
[50] E. George. Minimax Multiple Shrinkage Estimation , 1986 .
[51] Zoltán Sasvári,et al. Multivariate Characteristic and Correlation Functions , 2013 .
[52] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[53] Bernhard Schölkopf,et al. A Kernel Method for the Two-Sample-Problem , 2006, NIPS.
[54] H. Engl,et al. Regularization of Inverse Problems , 1996 .
[55] H. Hudson. A Natural Identity for Exponential Families with Applications in Multiparameter Estimation , 1978 .
[56] Kenji Fukumizu,et al. Statistical Consistency of Kernel Canonical Correlation Analysis , 2007 .
[57] S. Mendelson,et al. Regularization in kernel learning , 2010, 1001.2094.
[58] R. Wolpert,et al. Estimating the mean function of a Gaussian process and the Stein effect , 1983 .
[59] J. Berger. Admissible Minimax Estimation of a Multivariate Normal Mean with Arbitrary Quadratic Loss , 1976 .
[60] J. Diestel,et al. On vector measures , 1974 .
[61] Michael I. Jordan,et al. Dimensionality Reduction for Supervised Learning with Reproducing Kernel Hilbert Spaces , 2004, J. Mach. Learn. Res..
[62] A. Berlinet,et al. Reproducing kernel Hilbert spaces in probability and statistics , 2004 .
[63] Le Song,et al. Tailoring density estimation via reproducing kernel moment matching , 2008, ICML '08.
[64] Aaditya Ramdas,et al. Nonparametric Independence Testing for Small Sample Sizes , 2015, IJCAI.
[65] M. Urner. Scattered Data Approximation , 2016 .
[66] Carlos Guestrin,et al. Nonparametric Tree Graphical Models via Kernel Embeddings , 2010 .
[67] Le Song,et al. A Kernel Statistical Test of Independence , 2007, NIPS.
[68] Gert R. G. Lanckriet,et al. On the empirical estimation of integral probability metrics , 2012 .
[69] B. Efron,et al. Limiting the Risk of Bayes and Empirical Bayes Estimators—Part II: The Empirical Bayes Case , 1972 .
[70] C. Baker. Joint measures and cross-covariance operators , 1973 .
[71] Bernhard Schölkopf,et al. A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..
[72] V. Yurinsky. Sums and Gaussian Vectors , 1995 .
[73] C. Stein,et al. Estimation with Quadratic Loss , 1992 .
[74] Marvin H. J. Gruber. Improving Efficiency by Shrinkage: The James--Stein and Ridge Regression Estimators , 1998 .
[75] B. Efron,et al. Stein's Paradox in Statistics , 1977 .