Eliminating Unbounded Search in Computable Algebra
暂无分享,去创建一个
[1] André Nies,et al. Automatic Structures: Richness and Limitations , 2004, LICS.
[2] A. Montalbán,et al. A computability theoretic equivalent to Vaught’s conjecture , 2012, 1206.5682.
[3] Richard Lawrence Smith,et al. Two theorems on autostability in p-Groups , 1981 .
[4] Jr. Hartley Rogers. Theory of Recursive Functions and Effective Computability , 1969 .
[5] Julia A. Knight,et al. Computable structures and the hyperarithmetical hierarchy , 2000 .
[6] S. S. Goncharov,et al. Problem of the number of non-self-equivalent constructivizations , 1980 .
[7] Anil Nerode,et al. Automatic Presentations of Structures , 1994, LCC.
[8] André Nies,et al. Finite automata presentable abelian groups , 2009, Ann. Pure Appl. Log..
[9] S. Goncharov. Countable Boolean Algebras and Decidability , 1997 .
[10] Antonio Montalbán,et al. COMPUTABLE POLISH GROUP ACTIONS , 2018, The Journal of Symbolic Logic.
[11] A. Nies,et al. FA-presentable groups and rings , 2008 .
[12] Douglas A. Cenzer,et al. Polynomial-Time Abelian Groups , 1992, Ann. Pure Appl. Log..
[13] Keng Meng Ng,et al. Algebraic structures computable without delay , 2017, Theor. Comput. Sci..
[14] R. Dedekind,et al. Was sind und was sollen die Zahlen , 1961 .
[15] Anil Nerode,et al. Open Questions in the Theory of Automatic Structures , 2008, Bull. EATCS.
[16] Douglas A. Cenzer,et al. Space complexity of Abelian groups , 2009, Arch. Math. Log..
[17] P. E. Alaev. Existence and Uniqueness of Structures Computable in Polynomial Time , 2016 .
[18] Ana Sokolova,et al. Generic Trace Semantics via Coinduction , 2007, Log. Methods Comput. Sci..
[19] G. Higman. Subgroups of finitely presented groups , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[20] Universityof Aukland,et al. Effective Model Theory : The Number of Models and Their Complexity 1 , 1999 .
[21] Dugald Macpherson,et al. A survey of homogeneous structures , 2011, Discret. Math..
[22] C. Ash,et al. Recursive labelling systems and stability of recursive structures in hyperarithmetical degrees , 1986 .
[23] W. W. Boone,et al. THE WORD PROBLEM. , 1958, Proceedings of the National Academy of Sciences of the United States of America.
[24] Todor Tsankov,et al. The additive group of the rationals does not have an automatic presentation , 2009, The Journal of Symbolic Logic.
[25] Serge Grigorieff,et al. Every recursive linear ordering has a copy in DTIME-SPACE(n,log(n)) , 1990, Journal of Symbolic Logic.
[26] Gábor Braun,et al. Breaking up Finite Automata Presentable torsion-Free Abelian Groups , 2011, Int. J. Algebra Comput..
[27] Douglas A. Cenzer,et al. Polynomial-Time versus Recursive Models , 1991, Ann. Pure Appl. Log..
[28] David B. A. Epstein,et al. Word processing in groups , 1992 .
[29] B. L. Waerden. Eine Bemerkung über die Unzerlegbarkeit von Polynomen , 1930 .
[30] V. P. Dobritsa. Some constructivizations of Abelian groups , 1983 .
[31] M. Rabin. Computable algebra, general theory and theory of computable fields. , 1960 .
[32] Jeffrey B. Remmel,et al. Polynomial-time versus computable Boolean algebras , 1999 .
[33] J. Shepherdson,et al. Effective procedures in field theory , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[34] A. G. Melnikov,et al. The Diversity of Categoricity Without Delay , 2017 .
[35] A. I. Mal'tsev. CONSTRUCTIVE ALGEBRAS I , 1961 .
[36] Jeffrey B. Remmel,et al. Recursive Boolean algebras with recursive atoms , 1981, Journal of Symbolic Logic.
[37] Denis R. Hirschfeldt,et al. A computably categorical structure whose expansion by a constant has infinite computable dimension , 2003, J. Symb. Log..