Carbon nanotubes for clean energy applications

The issue of the sustainability of energy supply has attracted worldwide concern given the rapid depletion of fossil energy sources amid increasingly worsening environmental pollution and the drive to develop alternative, environment-friendly, renewable energy sources and energy carriers to secure our energy supply and sustainable development. Hydrogen is considered to be among the best solutions available, although technical barriers, in particular effective hydrogen storage, need to be dealt with. Quasi-one-dimensional carbon nanotubes (CNTs) with rich nanosized pore structures are considered to be a potential hydrogen storage medium; however, controversy over and discrepancies in both the experimental and theoretical results do exist. Therefore, the latest research progress in and the current situation pertaining to hydrogen storage in CNTs are reviewed and discussed in detail. Moreover, CNTs can have wide applications as alternative energy storage media, utilizing fully their unique structural characteristics. We summarize and analyse the advantages as well as the research progress made in using CNTs as electrode materials in lithium-ion batteries and supercapacitors. Further, future applications of CNTs in the energy storage field are explored.

[1]  Chang Liu,et al.  Synthesis and characterization of double-walled carbon nanotubes from multi-walled carbon nanotubes by hydrogen-arc discharge , 2005 .

[2]  Qingyuan Hu,et al.  Hydrogen adsorption in mesoporous carbons , 2004 .

[3]  Thomas Gennett,et al.  High-energy, rechargeable Li-ion battery based on carbon nanotube technology , 2004 .

[4]  B. K. Gupta,et al.  Studies on synthesis and hydrogenation behaviour of graphitic nanofibres prepared through palladium catalyst assisted thermal cracking of acetylene , 2004 .

[5]  Li Wang,et al.  The electrochemical hydrogen storage of multi-walled carbon nanotubes synthesized by chemical vapor deposition using a lanthanum nickel hydrogen storage alloy as catalyst , 2004 .

[6]  M. Sanjuán,et al.  Porosity, Surface Area, Surface Energy, and Hydrogen Adsorption in Nanostructured Carbons , 2004 .

[7]  Hiroshi Suzuki,et al.  Hydrogen Storage in High Surface Area Carbon Nanotubes Produced by Catalytic Chemical Vapor Deposition , 2004 .

[8]  N. Dupont-Pavlovsky,et al.  Thermodynamics and structure of hydrogen, methane, argon, oxygen, and carbon dioxide adsorbed on single-wall carbon nanotube bundles , 2004 .

[9]  Xueping Gao,et al.  Electrochemical hydrogen storage of carbon nanotubes and carbon nanofibers , 2004 .

[10]  G. Fey,et al.  Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries , 2004 .

[11]  Masahiko Morinaga,et al.  Enhanced Lithium Absorption in Single-Walled Carbon Nanotubes by Boron Doping , 2004 .

[12]  H. Yukawa,et al.  First-principles study on lithium absorption in carbon nanotubes , 2004 .

[13]  G. Kearley,et al.  Hydrogen adsorption in carbon nanostructures compared , 2004 .

[14]  H. Hatori,et al.  Adsorptive hydrogen storage in carbon and porous materials , 2004 .

[15]  Mario Conte,et al.  Overview of energy/hydrogen storage: state-of-the-art of the technologies and prospects for nanomaterials , 2004 .

[16]  J. Fierro,et al.  Enhanced hydrogen adsorption on single-wall carbon nanotubes by sample reduction , 2004 .

[17]  A. Goldoni,et al.  Vibrational and electronic properties of hydrogen adsorbed on single-wall carbon nanotubes , 2004 .

[18]  Xin Xu,et al.  New alkali doped pillared carbon materials designed to achieve practical reversible hydrogen storage for transportation. , 2004, Physical review letters.

[19]  Kun-Hong Lee,et al.  Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes , 2004 .

[20]  Pierre Bénard,et al.  Storage of hydrogen on single-walled carbon nanotubes and other carbon structures , 2004 .

[21]  F. Béguin,et al.  Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials , 2004 .

[22]  Hiromichi Kataura,et al.  Hydrogen adsorption and desorption in carbon nanotube systems and its mechanisms , 2004 .

[23]  A. Züttel,et al.  Model for the hydrogen adsorption on carbon nanostructures , 2004 .

[24]  P. Ruffieux,et al.  Hydrogen chemisorption on sp2-bonded carbon: Influence of the local curvature and local electronic effects , 2004 .

[25]  F. Wei,et al.  Hydrogen storage in multi-wall carbon nanotubes using samples up to 85 g , 2004 .

[26]  S. Yamanaka,et al.  Hydrogen content and desorption of carbon nano-structures , 2004 .

[27]  P. Georgiev,et al.  Hydrogen site occupancies in single-walled carbon nanotubes studied by inelastic neutron scattering , 2004 .

[28]  Xiangdong Liu,et al.  Quasi-one-dimensional liquid hydrogen confined in single-walled carbon nanotubes , 2004 .

[29]  L. Duclaux,et al.  Hydrogen adsorption in microporous alkali-doped carbons (activated carbon and single wall nanotubes) , 2004 .

[30]  Gu Xu,et al.  High pressure saturation of hydrogen stored by single-wall carbon nanotubes , 2004 .

[31]  R. T. Yang,et al.  Hydrogen storage in graphite nanofibers: effect of synthesis catalyst and pretreatment conditions. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[32]  M. Izquierdo,et al.  Hydrogen adsorption studies on single wall carbon nanotubes , 2004 .

[33]  Seong-Ho Yoon,et al.  Novel carbon nanofibers of high graphitization as anodic materials for lithium ion secondary batteries , 2004 .

[34]  B. Stansfield,et al.  On the control of carbon nanostructures for hydrogen storage applications , 2004 .

[35]  S. Han,et al.  ADSORPTION PROPERTIES OF HYDROGEN ON (10, 0) SINGLE-WALLED CARBON NANOTUBE THROUGH DENSITY FUNCTIONAL THEORY , 2004 .

[36]  Xueping Gao,et al.  A first-principles study of lithium absorption in boron- or nitrogen-doped single-walled carbon nanotubes , 2004 .

[37]  Jinrong Cheng,et al.  GCMC simulation of hydrogen physisorption on carbon nanotubes and nanotube arrays , 2004 .

[38]  S. Motojima,et al.  Interaction of hydrogen with carbon coils at low temperature , 2004 .

[39]  Huifang Xu,et al.  The role of carbon nanotube structure in purification and hydrogen adsorption , 2004 .

[40]  O. Zhou,et al.  Lithium insertion into purified and etched multi-walled carbon nanotubes synthesized on supported catalysts by thermal CVD , 2004 .

[41]  V. Crespi,et al.  Collective stabilization of hydrogen chemisorption on graphenic surfaces , 2003 .

[42]  Yulian Chen,et al.  Hydrogen storage for carbon nanotubes synthesized by the pyrolysis method using lanthanum nickel alloy as catalyst , 2003 .

[43]  Yan Sun,et al.  Adsorption of hydrogen on multiwalled carbon natotubes at 77 K , 2003 .

[44]  Dong Xu,et al.  Hydrogen adsorption of open-tipped insufficiently graphitized multiwalled carbon nanotubes , 2003 .

[45]  G. Kearley,et al.  Hydrogen adsorption in carbon nanostructures: comparison of nanotubes, fibers, and coals. , 2003, Chemistry.

[46]  Andreas Züttel,et al.  Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials , 2003 .

[47]  L. Duclaux,et al.  D2 adsorption in potassium-doped single-wall carbon nanotubes: a neutron diffraction and isotherms study , 2003 .

[48]  M. Hirscher,et al.  Are carbon nanostructures an efficient hydrogen storage medium , 2003 .

[49]  M. V. Lototsky,et al.  Hydrogen sorption properties of arc generated single-wall carbon nanotubes , 2003 .

[50]  K. An,et al.  Fabrication of Supercapacitor Electrodes Using Fluorinated Single-Walled Carbon Nanotubes , 2003 .

[51]  Ju Li,et al.  Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures , 2003 .

[52]  Wei Shi,et al.  Gas adsorption on heterogeneous single-walled carbon nanotube bundles. , 2003, Physical review letters.

[53]  B. Simard,et al.  Effects of doped copper on electrochemical performance of the raw carbon nanotubes anode , 2003 .

[54]  M. Shaijumon,et al.  Synthesis of carbon nanotubes by pyrolysis of acetylene using alloy hydride materials as catalysts and their hydrogen adsorption studies , 2003 .

[55]  S. Dou,et al.  Preparation and characterization of carbon nanotubes for energy storage , 2003 .

[56]  Andreas Züttel,et al.  LiBH4 a new hydrogen storage material , 2003 .

[57]  E. Tanabe,et al.  Unusual hydrogen absorption properties in graphite mechanically milled under various hydrogen pressures up to 6 MPa , 2003 .

[58]  SangGap Lee,et al.  NMR of hydrogen adsorbed on carbon nanotubes , 2003 .

[59]  Maomao Chen,et al.  Synthesis and characterization of SnO–carbon nanotube composite as anode material for lithium-ion batteries , 2003 .

[60]  Jianfeng Chen,et al.  Hydrogen Adsorption Storage on Single-Walled Carbon Nanotube Arrays by a Combination of Classical Potential and Density Functional Theory , 2003 .

[61]  F. Cleri,et al.  Role of surface chemistry in hydrogen adsorption in single-wall carbon nanotubes , 2003 .

[62]  A. Yamada,et al.  Hydrogen storage in C70 encapsulated single-walled carbon nanotube , 2003 .

[63]  J. Johnson,et al.  Chemical Activation of Single-Walled Carbon Nanotubes for Hydrogen Adsorption , 2003 .

[64]  Yuchen Ma,et al.  Condensation and phase transition of hydrogen molecules confined in single-walled carbon nanotubes , 2003 .

[65]  Maomao Chen,et al.  Structural characterization and electrochemical lithium insertion properties of carbon nanotubes prepared by the catalytic decomposition of methane , 2003 .

[66]  Koji Kadono,et al.  Hydrogen storage capacity of commercially available carbon materials at room temperature , 2003 .

[67]  K. S. Dhathathreyan,et al.  Hydrogen storage in carbon nanotubes and related materials , 2003 .

[68]  B. Wei,et al.  Annealing amorphous carbon nanotubes for their application in hydrogen storage , 2003 .

[69]  Qiangfeng Xiao,et al.  The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor , 2003 .

[70]  Masashi Shiraishi,et al.  Gas–solid interactions in the hydrogen/single-walled carbon nanotube system , 2003 .

[71]  J. Skowronski,et al.  Room Temperature Electrochemical Opening of Carbon Nanotubes Followed by Hydrogen Storage , 2003 .

[72]  Quan-hong Yang,et al.  Hydrogen adsorption/desorption behavior of multi-walled carbon nanotubes with different diameters , 2003 .

[73]  Weixiang Chen,et al.  The nanocomposites of carbon nanotube with Sb and SnSb0.5 as Li-ion battery anodes , 2003 .

[74]  A. Züttel,et al.  Physisorption of hydrogen in single-walled carbon nanotubes , 2003 .

[75]  G. Sotzing,et al.  Conductive Polymer Foams as Sensors for Volatile Amines. , 2003 .

[76]  J. Tu,et al.  Preparation of short carbon nanotubes by mechanical ball milling and their hydrogen adsorption behavior , 2003 .

[77]  L. Schlapbach,et al.  Hydrogen adsorption on sp2-bonded carbon: Influence of the local curvature , 2002 .

[78]  Quan-hong Yang,et al.  Pore structure of SWNTs with high hydrogen storage capacity , 2002 .

[79]  K. L. Tan,et al.  Interaction of hydrogen with metal nitrides and imides , 2002, Nature.

[80]  P. Bernier,et al.  NMR investigations of hydrogen in carbon nanotubes , 2002 .

[81]  Young-Gu Jin,et al.  First-principles study of hydrogen adsorption on carbon nanotube surfaces , 2002 .

[82]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[83]  F. Béguin,et al.  Electrochemical storage of energy in carbon nanotubes and nanostructured carbons , 2002 .

[84]  Seong Chu Lim,et al.  High-Capacitance Supercapacitor Using a Nanocomposite Electrode of Single-Walled Carbon Nanotube and Polypyrrole , 2002 .

[85]  Wenzhi Li,et al.  Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors , 2002 .

[86]  Feng Li,et al.  Morphology, diameter distribution and Raman scattering measurements of double-walled carbon nanotubes synthesized by catalytic decomposition of methane , 2002 .

[87]  A. Yamada,et al.  Hydrogen storage in single-walled carbon nanotube bundles and peapods , 2002 .

[88]  Jörg Fink,et al.  Hydrogen storage in different carbon nanostructures , 2002 .

[89]  Hui‐Ming Cheng,et al.  Electrochemical charge-discharge capacity of purified single-walled carbon nanotubes , 2002 .

[90]  Quan-hong Yang,et al.  Volumetric hydrogen storage in single-walled carbon nanotubes , 2002 .

[91]  Chang Liu,et al.  Electrochemical hydrogen storage behavior of ropes of aligned single-walled carbon nanotubes , 2002 .

[92]  Andreas Züttel,et al.  Hydrogen storage in carbon nanostructures , 2002 .

[93]  Christopher Roland,et al.  Ab initio investigations of lithium diffusion in carbon nanotube systems. , 2002, Physical review letters.

[94]  Jörg Fink,et al.  Hydrogen storage in carbon nanostructures , 2002 .

[95]  A. Züttel,et al.  Hydrogen adsorption in carbonaceous materials–: How to determine the storage capacity accurately , 2002 .

[96]  Ron Dagani,et al.  TEMPEST IN A TINY TUBE: Can carbon nanotubes store significant amounts of hydrogen under practical conditions? It depends on whom you ask—and therein lies the controversy , 2002 .

[97]  A. Kleinhammes,et al.  Lithium intercalation into opened single-wall carbon nanotubes: storage capacity and electronic properties. , 2001, Physical review letters.

[98]  Veziroglu Т.Nejat,et al.  HYDROGEN ENERGY SYSTEM AS A PERMANENT SOLUTION TO GLOBAL ENERGY - ENVIRONMENTAL PROBLEMS , 2002 .

[99]  Ron Dagani,et al.  Tempest in a tiny tube , 2002 .

[100]  B. Meier,et al.  Rotational-state selective nuclear magnetic resonance spectra of hydrogen in a molecular trap , 2001 .

[101]  B. Wei,et al.  Electric double-layer capacitors using carbon nanotube electrodes and organic electrolyte , 2001 .

[102]  Riichiro Saito,et al.  Anomalous potential barrier of double-wall carbon nanotube , 2001 .

[103]  F. Béguin,et al.  Supercapacitors from nanotubes/polypyrrole composites , 2001 .

[104]  S. Scheiner,et al.  Insertion of Lithium Ions into Carbon Nanotubes: An Ab Initio Study , 2001 .

[105]  Young Hee Lee,et al.  Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes , 2001 .

[106]  Quan-hong Yang,et al.  Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes , 2001 .

[107]  Minhee Yun,et al.  Electrochemical hydrogen storage behaviors of CVD, AD and LA grown carbon nanotubes in KOH medium , 2001 .

[108]  M. Dresselhaus,et al.  Vapor-grown carbon fibers (VGCFs): Basic properties and their battery applications , 2001 .

[109]  Hui-Ming Cheng,et al.  Hydrogen storage in carbon nanotubes , 2001 .

[110]  Ji Liang,et al.  Hydrogen storage of dense-aligned carbon nanotubes , 2001 .

[111]  Cailu Xu,et al.  Hydrogen adsorption in bundles of well-aligned carbon nanotubes at room temperature , 2001 .

[112]  F. Béguin,et al.  Nanotubular materials for supercapacitors , 2001 .

[113]  Hansong Cheng,et al.  Mechanism of hydrogen sorption in single-walled carbon nanotubes. , 2001, Journal of the American Chemical Society.

[114]  P. Dubot,et al.  Modeling of molecular hydrogen and lithium adsorption on single-wall carbon nanotubes , 2001 .

[115]  X. Bai,et al.  Hydrogen storage in aligned carbon nanotubes , 2001 .

[116]  Seong Chu Lim,et al.  Supercapacitors Using Single‐Walled Carbon Nanotube Electrodes , 2001 .

[117]  K. Tada,et al.  Ab initio study of hydrogen adsorption to single-walled carbon nanotubes , 2001 .

[118]  Yuchen Ma,et al.  Effective hydrogen storage in single-wall carbon nanotubes , 2001 .

[119]  P. Downes,et al.  Hydrogen storage in sonicated carbon materials , 2001 .

[120]  Michael J. Heben,et al.  Hydrogen storage using carbon adsorbents: past, present and future , 2001 .

[121]  C. Bauschlicher,et al.  High Coverages of Hydrogen on a (10,0) Carbon Nanotube , 2001 .

[122]  B. Mcenaney,et al.  Molecular Simulations of Hydrogen Storage in Carbon Nanotube Arrays , 2000 .

[123]  K. Méténier,et al.  Supercapacitor electrodes from multiwalled carbon nanotubes , 2000 .

[124]  Natarajan Rajalakshmi,et al.  Electrochemical investigation of single-walled carbon nanotubes for hydrogen storage , 2000 .

[125]  Otto Zhou,et al.  Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes , 2000 .

[126]  M. Dresselhaus,et al.  Synthesis of Macroscopically Long Ropes of Well-Aligned Single-Walled Carbon Nanotubes , 2000 .

[127]  Young Hee Lee,et al.  Hydrogen storage in single-walled carbon nanotubes , 2000 .

[128]  Peter C. Eklund,et al.  Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes , 2000 .

[129]  R. T. Yang,et al.  Hydrogen storage by alkali-doped carbon nanotubes–revisited , 2000 .

[130]  A. Züttel,et al.  Hydrogen in the mechanically prepared nanostructured graphite , 1999 .

[131]  Cheng,et al.  Hydrogen storage in single-walled carbon nanotubes at room temperature , 1999, Science.

[132]  Peter C. Eklund,et al.  Hydrogen Adsorption in Carbon Materials , 1999 .

[133]  Chen,et al.  High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures , 1999, Science.

[134]  J. Karl Johnson,et al.  Optimization of Carbon Nanotube Arrays for Hydrogen Adsorption , 1999 .

[135]  Kenneth A. Smith,et al.  Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes , 1999 .

[136]  Toshihiro Tanaka,et al.  Use of Thermodynamic Data to Determine Surface Tension and Viscosity of Metallic Alloys , 1999 .

[137]  X. Qin,et al.  Electrochemical Hydrogen Storage of Multiwalled Carbon Nanotubes , 1999 .

[138]  Andreas Züttel,et al.  Electrochemical Storage of Hydrogen in Nanotube Materials , 1999 .

[139]  S. Bonnamy,et al.  Electrochemical storage of lithium in multiwalled carbon nanotubes , 1999 .

[140]  Chang Liu,et al.  Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method , 1999 .

[141]  J. Johnson,et al.  MOLECULAR SIMULATION OF HYDROGEN ADSORPTION IN SINGLE-WALLED CARBON NANOTUBES AND IDEALIZED CARBON SLIT PORES , 1999 .

[142]  Peter Lamp,et al.  Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes , 1998 .

[143]  C. R. Martin,et al.  Carbon nanotubule membranes for electrochemical energy storage and production , 1998, Nature.

[144]  B. Bogdanovic,et al.  Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials , 1997 .

[145]  R. Hoch,et al.  High power electrochemical capacitors based on carbon nanotube electrodes , 1997 .

[146]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[147]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[148]  Richard Chahine,et al.  Low-pressure adsorption storage of hydrogen , 1994 .

[149]  M. Dresselhaus,et al.  Electronic structure of double‐layer graphene tubules , 1993 .

[150]  F. Barbir,et al.  Hydrogen: the wonder fuel , 1992 .

[151]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[152]  C. Carpetis,et al.  A study on hydrogen storage by use of cryoadsorbents , 1980 .