MYC reshapes CTCF-mediated chromatin architecture in prostate cancer

[1]  M. Fullwood,et al.  MYC overexpression leads to increased chromatin interactions at super-enhancers and MYC binding sites , 2022, Genome research.

[2]  D. Reinberg,et al.  CRISPR and biochemical screens identify MAZ as a cofactor in CTCF-mediated insulation at Hox clusters , 2022, Nature genetics.

[3]  Keegan D. Korthauer,et al.  Androgen receptor and MYC equilibration centralizes on developmental super-enhancer , 2021, Nature Communications.

[4]  Erika M. Deoudes,et al.  Plotgardener: Cultivating precise multi-panel figures in R , 2021, bioRxiv.

[5]  Kathleen E. Houlahan,et al.  CRISPRi screens reveal a DNA methylation-mediated 3D genome dependent causal mechanism in prostate cancer , 2021, Nature Communications.

[6]  G. Felsenfeld,et al.  The Myc-associated zinc finger protein (MAZ) works together with CTCF to control cohesin positioning and genome organization , 2021, Proceedings of the National Academy of Sciences.

[7]  Shondra M. Pruett-Miller,et al.  Dynamic CTCF binding directly mediates interactions among cis-regulatory elements essential for hematopoiesis. , 2020, Blood.

[8]  B. Carver,et al.  ERG orchestrates chromatin interactions to drive prostate cell fate reprogramming , 2020, bioRxiv.

[9]  Nakul M. Shah,et al.  A genomic and epigenomic atlas of prostate cancer in Asian populations , 2020, Nature.

[10]  Takafumi N. Yamaguchi,et al.  Cistrome Partitioning Reveals Convergence of Somatic Mutations and Risk Variants on Master Transcription Regulators in Primary Prostate Tumors. , 2019, Cancer cell.

[11]  Xue Leng,et al.  Transmembrane Channel-Like 5 (TMC5) promotes prostate cancer cell proliferation through cell cycle regulation. , 2019, Biochimie.

[12]  P. Farnham,et al.  A high-resolution 3D epigenomic map reveals insights into the creation of the prostate cancer transcriptome , 2019, Nature Communications.

[13]  Howard Y. Chang,et al.  HiChIRP reveals RNA-associated chromosome conformation , 2019, Nature Methods.

[14]  Beisi Xu,et al.  Acute depletion of CTCF directly affects MYC regulation through loss of enhancer–promoter looping , 2019, Nucleic acids research.

[15]  A. Hutchins,et al.  An alternative CTCF isoform antagonizes canonical CTCF occupancy and changes chromatin architecture to promote apoptosis , 2019, Nature Communications.

[16]  T. H. van der Kwast,et al.  ONECUT2 is a driver of neuroendocrine prostate cancer , 2019, Nature Communications.

[17]  Nicola J. Rinaldi,et al.  An AR-ERG transcriptional signature defined by long-range chromatin interactomes in prostate cancer cells , 2019, Genome research.

[18]  N. Hannett,et al.  Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains , 2018, Cell.

[19]  Mauro A. A. Castro,et al.  The chromatin accessibility landscape of primary human cancers , 2018, Science.

[20]  G. Coetzee,et al.  CRISPR-mediated deletion of prostate cancer risk-associated CTCF loop anchors identifies repressive chromatin loops , 2018, Genome Biology.

[21]  Dennis J. Hazelett,et al.  CRISPR-mediated deletion of prostate cancer risk-associated CTCF loop anchors identifies repressive chromatin loops , 2018, Genome Biology.

[22]  Anders S Hansen,et al.  CTCF sites display cell cycle–dependent dynamics in factor binding and nucleosome positioning , 2018, bioRxiv.

[23]  Howard Y. Chang,et al.  Promoter of lncRNA Gene PVT1 Is a Tumor-Suppressor DNA Boundary Element , 2018, Cell.

[24]  Zhihua Liu,et al.  Diverse AR-V7 cistromes in castration-resistant prostate cancer are governed by HoxB13 , 2018, Proceedings of the National Academy of Sciences.

[25]  Daniel S. Day,et al.  Transcriptional Dysregulation of MYC Reveals Common Enhancer-Docking Mechanism , 2018, Cell reports.

[26]  Martin J. Aryee,et al.  hichipper: a preprocessing pipeline for calling DNA loops from HiChIP data , 2018, Nature Methods.

[27]  Erez Lieberman Aiden,et al.  Cohesin Loss Eliminates All Loop Domains , 2017, Cell.

[28]  Erez Lieberman Aiden,et al.  Myc Regulates Chromatin Decompaction and Nuclear Architecture during B Cell Activation. , 2017, Molecular cell.

[29]  Ann E. Sizemore,et al.  Computational correction of copy-number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells , 2017, Nature Genetics.

[30]  E. Niskanen,et al.  Global analysis of transcription in castration-resistant prostate cancer cells uncovers active enhancers and direct androgen receptor targets , 2016, Scientific Reports.

[31]  Howard Y. Chang,et al.  HiChIP: efficient and sensitive analysis of protein-directed genome architecture , 2016, Nature Methods.

[32]  Dorota H. Sendorek,et al.  Modulation of long noncoding RNAs by risk SNPs underlying genetic predispositions to prostate cancer , 2016, Nature Genetics.

[33]  Neva C. Durand,et al.  Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. , 2016, Cell systems.

[34]  Fidel Ramírez,et al.  deepTools2: a next generation web server for deep-sequencing data analysis , 2016, Nucleic Acids Res..

[35]  Philip A. Ewels,et al.  HiCUP: pipeline for mapping and processing Hi-C data , 2015, F1000Research.

[36]  Philip A. Ewels,et al.  HiCUP: pipeline for mapping and processing Hi-C data , 2015, F1000Research.

[37]  Steven J. M. Jones,et al.  The Molecular Taxonomy of Primary Prostate Cancer , 2015, Cell.

[38]  Qing-Yu He,et al.  ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization , 2015, Bioinform..

[39]  Javier León,et al.  Myc and cell cycle control. , 2015, Biochimica et biophysica acta.

[40]  Zhaohui S. Qin,et al.  Therapeutic Targeting of BET Bromodomain Proteins in Castration-Resistant Prostate Cancer , 2014, Nature.

[41]  V. Corces,et al.  CTCF: an architectural protein bridging genome topology and function , 2014, Nature Reviews Genetics.

[42]  Simon G. Coetzee,et al.  Comprehensive Functional Annotation of 77 Prostate Cancer Risk Loci , 2014, PLoS genetics.

[43]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[44]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[45]  M. Rubin,et al.  Oncogene-mediated alterations in chromatin conformation , 2012, Proceedings of the National Academy of Sciences.

[46]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[47]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[48]  Jun Liu,et al.  Cooperation between Polycomb and androgen receptor during oncogenic transformation. , 2012, Genome research.

[49]  P. Nelson,et al.  Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. , 2011, Cancer cell.

[50]  Clifford A. Meyer,et al.  Cistrome: an integrative platform for transcriptional regulation studies , 2011, Genome Biology.

[51]  John T. Wei,et al.  Transcriptome Sequencing Identifies PCAT-1, a Novel lincRNA Implicated in Prostate Cancer Progression , 2011, Nature biotechnology.

[52]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[53]  Zhaohui S. Qin,et al.  An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. , 2010, Cancer cell.

[54]  G. Coetzee,et al.  8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC , 2010, Proceedings of the National Academy of Sciences.

[55]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[56]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[57]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[58]  David J. Reiss,et al.  CTCF physically links cohesin to chromatin , 2008, Proceedings of the National Academy of Sciences.

[59]  T. Golub,et al.  Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. , 2006, Cancer research.

[60]  J. Tchinda,et al.  Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. , 2006, Science.

[61]  J. Tchinda,et al.  Recurrent Fusion of TMPRSS2 and ETS Transcription Factor Genes in Prostate Cancer , 2005, Science.