Surpassing the 10% efficiency milestone for 1-cm2 all-polymer solar cells

[1]  C. Brabec,et al.  Ternary All-Polymer Solar Cells With 8.5% Power Conversion Efficiency and Excellent Thermal Stability , 2020, Frontiers in Chemistry.

[2]  Bumjoon J. Kim,et al.  Recent Advances, Design Guidelines, and Prospects of All-Polymer Solar Cells. , 2019, Chemical reviews.

[3]  Wenkai Zhong,et al.  Achieving over 16% efficiency for single-junction organic solar cells , 2019, Science China Chemistry.

[4]  F. Liu,et al.  A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11% , 2019, Energy & Environmental Science.

[5]  Martin A. Green,et al.  Electrode Design to Overcome Substrate Transparency Limitations for Highly Efficient 1 cm2 Mesoscopic Perovskite Solar Cells , 2018, Joule.

[6]  Fei Huang,et al.  Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics , 2018, Nature Energy.

[7]  Xiaochen Wang,et al.  Aromatic‐Diimide‐Based n‐Type Conjugated Polymers for All‐Polymer Solar Cell Applications , 2018, Advanced materials.

[8]  Yongfang Li,et al.  Highly Flexible and Efficient All-Polymer Solar Cells with High-Viscosity Processing Polymer Additive toward Potential of Stretchable Devices. , 2018, Angewandte Chemie.

[9]  Wenkai Zhong,et al.  High‐Performance Thick‐Film All‐Polymer Solar Cells Created Via Ternary Blending of a Novel Wide‐Bandgap Electron‐Donating Copolymer , 2018 .

[10]  Yongfang Li,et al.  Dye-Incorporated Polynaphthalenediimide Acceptor for Additive-Free High-Performance All-Polymer Solar Cells. , 2018, Angewandte Chemie.

[11]  Zhaojun Li,et al.  Energy-effectively printed all-polymer solar cells exceeding 8.61% efficiency , 2018 .

[12]  F. Liu,et al.  All‐Polymer Solar Cells Based on a Conjugated Polymer Containing Siloxane‐Functionalized Side Chains with Efficiency over 10% , 2017, Advanced materials.

[13]  He Yan,et al.  Improved Performance of All‐Polymer Solar Cells Enabled by Naphthodiperylenetetraimide‐Based Polymer Acceptor , 2017, Advanced materials.

[14]  Francisco Molina-Lopez,et al.  Roll‐to‐Roll Printed Large‐Area All‐Polymer Solar Cells with 5% Efficiency Based on a Low Crystallinity Conjugated Polymer Blend , 2017 .

[15]  Jun Liu,et al.  Conjugated polymers containing B←N unit as electron acceptors for all-polymer solar cells , 2017, Science China Chemistry.

[16]  Bumjoon J. Kim,et al.  From Fullerene-Polymer to All-Polymer Solar Cells: The Importance of Molecular Packing, Orientation, and Morphology Control. , 2016, Accounts of chemical research.

[17]  O. Inganäs,et al.  High Performance All-Polymer Solar Cells by Synergistic Effects of Fine-Tuned Crystallinity and Solvent Annealing. , 2016, Journal of the American Chemical Society.

[18]  M. Ford,et al.  Improved All‐Polymer Solar Cell Performance by Using Matched Polymer Acceptor , 2016 .

[19]  T. Russell,et al.  High‐Performance Polymer Solar Cells Based on a Wide‐Bandgap Polymer Containing Pyrrolo[3,4‐f]benzotriazole‐5,7‐dione with a Power Conversion Efficiency of 8.63% , 2016, Advanced science.

[20]  Jianqi Zhang,et al.  All‐Polymer Solar Cells Based on Absorption‐Complementary Polymer Donor and Acceptor with High Power Conversion Efficiency of 8.27% , 2016, Advanced materials.

[21]  Hongbin Wu,et al.  n-Type Water/Alcohol-Soluble Naphthalene Diimide-Based Conjugated Polymers for High-Performance Polymer Solar Cells. , 2016, Journal of the American Chemical Society.

[22]  Yanchun Han,et al.  Donor/Acceptor Molecular Orientation-Dependent Photovoltaic Performance in All-Polymer Solar Cells. , 2015, ACS applied materials & interfaces.

[23]  Cheng Wang,et al.  Flexible, highly efficient all-polymer solar cells , 2015, Nature Communications.

[24]  H. Ade,et al.  Manipulating Aggregation and Molecular Orientation in All‐Polymer Photovoltaic Cells , 2015, Advanced materials.

[25]  Frank W. Fecher,et al.  Guidelines for Closing the Efficiency Gap between Hero Solar Cells and Roll‐To‐Roll Printed Modules , 2015 .

[26]  Daisuke Mori,et al.  Highly efficient charge-carrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7% , 2014 .

[27]  J. Behrends,et al.  Correlated Donor/Acceptor Crystal Orientation Controls Photocurrent Generation in All‐Polymer Solar Cells , 2014 .

[28]  Christoph J. Brabec,et al.  An Efficient Solution‐Processed Intermediate Layer for Facilitating Fabrication of Organic Multi‐Junction Solar Cells , 2013 .

[29]  Marco Seeland,et al.  Optimal geometric design of monolithic thin-film solar modules: Architecture of polymer solar cells , 2012 .

[30]  Eric T. Hoke,et al.  Accounting for Interference, Scattering, and Electrode Absorption to Make Accurate Internal Quantum Efficiency Measurements in Organic and Other Thin Solar Cells , 2010, Advanced materials.

[31]  Christoph J. Brabec,et al.  Fabrication, Optical Modeling, and Color Characterization of Semitransparent Bulk‐Heterojunction Organic Solar Cells in an Inverted Structure , 2010 .

[32]  R. Friend,et al.  Formation of nanopatterned polymer blends in photovoltaic devices. , 2010, Nano letters.

[33]  Bernard Kippelen,et al.  Area-scaling of organic solar cells , 2009 .

[34]  A. Facchetti,et al.  A high-mobility electron-transporting polymer for printed transistors , 2009, Nature.

[35]  Derek L. Ho,et al.  Insight into Clustering in Poly(ethylene oxide) Solutions , 2004 .

[36]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.