A. Hurwitz and the origins of random matrix theory in mathematics
暂无分享,去创建一个
[1] Joel A. Tropp,et al. An Introduction to Matrix Concentration Inequalities , 2015, Found. Trends Mach. Learn..
[2] Madan Lal Mehta,et al. Random Matrices and the Statistical Theory of Energy Levels , 2014 .
[3] Angela Spalsbury,et al. The Joys of Haar Measure , 2014 .
[4] J. Steuding,et al. Complex continued fractions: early work of the brothers Adolf and Julius Hurwitz , 2014 .
[5] S. Skipetrov,et al. Euclidean random matrices and their applications in physics , 2013, 1303.2880.
[6] Cedric E. Ginestet. Spectral Analysis of Large Dimensional Random Matrices, 2nd edn , 2012 .
[7] T. Tao. Topics in Random Matrix Theory , 2012 .
[8] J. Baik,et al. The Oxford Handbook of Random Matrix Theory , 2011 .
[9] L. Pastur,et al. Eigenvalue Distribution of Large Random Matrices , 2011 .
[10] Yan Fyodorov,et al. Random matrix theory , 2011, Scholarpedia.
[11] Roman Vershynin,et al. Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.
[12] P. Forrester. Log-Gases and Random Matrices , 2010 .
[13] P. Forrester. Log-Gases and Random Matrices (LMS-34) , 2010 .
[14] J. W. Silverstein,et al. Spectral Analysis of Large Dimensional Random Matrices , 2009 .
[15] Teodor Banica,et al. On polynomial integrals over the orthogonal group , 2009, J. Comb. Theory, Ser. A.
[16] Steven J. Miller,et al. Nuclei, Primes and the Random Matrix Connection , 2009, Symmetry.
[17] R. Killip,et al. Eigenvalue statistics for CMV matrices: From Poisson to clock via random matrix ensembles , 2009 .
[18] M. Yor,et al. The characteristic polynomial of a random unitary matrix: A probabilistic approach , 2007, 0706.0333.
[19] K. Parshall. The British development of the theory of invariants (1841–1895) , 2006 .
[20] F. Mezzadri. How to generate random matrices from the classical compact groups , 2006, math-ph/0609050.
[21] D. Braun. Invariant integration over the orthogonal group , 2006, math-ph/0607064.
[22] Elizabeth Meckes,et al. Linear functions on the classical matrix groups , 2005, math/0509441.
[23] C. Jarlskog. A recursive parametrization of unitary matrices , 2005, math-ph/0504049.
[24] R. Killip,et al. Matrix models for circular ensembles , 2004, math/0410034.
[25] Antonia Maria Tulino,et al. Random Matrix Theory and Wireless Communications , 2004, Found. Trends Commun. Inf. Theory.
[26] M. J. Cantero,et al. Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle , 2002, math/0204300.
[27] P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .
[28] N. Snaith,et al. Random Matrix Theory and ζ(1/2+it) , 2000 .
[29] K. Życzkowski,et al. Random unitary matrices , 1994 .
[30] C. Tracy,et al. Introduction to Random Matrices , 1992, hep-th/9210073.
[31] T. W. Anderson,et al. Generation of random orthogonal matrices , 1987 .
[32] P. Diaconis,et al. The Subgroup Algorithm for Generating Uniform Random Variables , 1987, Probability in the Engineering and Informational Sciences.
[33] T. Crilly. The rise of Cayley's invariant theory (1841–1862) , 1986 .
[34] G. Stewart. The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators , 1980 .
[35] Don Weingarten,et al. Asymptotic behavior of group integrals in the limit of infinite rank , 1978 .
[36] Freeman J. Dyson,et al. The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics , 1962 .
[37] J. Gunson,et al. Proof of a Conjecture by Dyson in the Statistical Theory of Energy Levels , 1962 .
[38] A. Macbeath. The volume of a certain set of matrices , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.
[39] A. T. James,et al. A generating function for averages over the orthogonal group , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[40] Carl Ludwig Siegel,et al. A Mean Value Theorem in Geometry of Numbers , 1945 .
[41] H. Weyl. The Classical Groups , 1940 .
[42] J. Wishart. THE GENERALISED PRODUCT MOMENT DISTRIBUTION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION , 1928 .
[43] T. Andersona. Multiple discoveries : Distribution of roots of determinantal equations , 2007 .
[44] R. Speicher,et al. Lectures on the Combinatorics of Free Probability: Unitary random matrices , 2006 .
[45] O. Bohigas. Recent Perspectives in Random Matrix Theory and Number Theory: Compound nucleus resonances, random matrices, quantum chaos , 2005 .
[46] N. O'Connell,et al. PATTERNS IN EIGENVALUES: THE 70TH JOSIAH WILLARD GIBBS LECTURE , 2003 .
[47] M. Tkachenko,et al. Topological Features of Topological Groups , 2001 .
[48] P. Diaconis,et al. Bounds for Kac's Master Equation , 1999 .
[49] A. Norton. Nuclei , 1997, Understanding the Universe.
[50] Robert Lowen,et al. Handbook of the History of General Topology , 1997 .
[51] F. Dyson. Correlations between eigenvalues of a random matrix , 1970 .
[52] C. Porter. Statistical Theories of Spectra: Fluctuations , 1965 .
[53] A. Borji,et al. Special Functions , 1964 .
[54] A. Hurwitz,et al. über die Erzeugung der Invarianten durch Integration , 1963 .
[55] Edwin Hewitt,et al. Structure of topological groups, integration theory, group representations , 1963 .
[56] F. Murnaghan. The unitary and rotation groups , 1962 .
[57] F. Dyson. Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .
[58] R. F.,et al. Mathematical Statistics , 1944, Nature.