A. Hurwitz and the origins of random matrix theory in mathematics

The purpose of this article is to put forward the claim that Hurwitz's paper "Uber die Erzeugung der Invarianten durch Integration." [Gott. Nachrichten (1897), 71-90] should be regarded as the origin of random matrix theory in mathematics. Here Hurwitz introduced and developed the notion of an invariant measure for the matrix groups $SO(N)$ and $U(N)$. He also specified a calculus from which the explicit form of these measures could be computed in terms of an appropriate parametrisation - Hurwitz chose to use Euler angles. This enabled him to define and compute invariant group integrals over $SO(N)$ and $U(N)$. His main result can be interpreted probabilistically: the Euler angles of a uniformly distributed matrix are independent with beta distributions (and conversely). We use this interpretation to give some new probability results. How Hurwitz's ideas and methods show themselves in the subsequent work of Weyl, Dyson and others on foundational studies in random matrix theory is detailed.

[1]  Joel A. Tropp,et al.  An Introduction to Matrix Concentration Inequalities , 2015, Found. Trends Mach. Learn..

[2]  Madan Lal Mehta,et al.  Random Matrices and the Statistical Theory of Energy Levels , 2014 .

[3]  Angela Spalsbury,et al.  The Joys of Haar Measure , 2014 .

[4]  J. Steuding,et al.  Complex continued fractions: early work of the brothers Adolf and Julius Hurwitz , 2014 .

[5]  S. Skipetrov,et al.  Euclidean random matrices and their applications in physics , 2013, 1303.2880.

[6]  Cedric E. Ginestet Spectral Analysis of Large Dimensional Random Matrices, 2nd edn , 2012 .

[7]  T. Tao Topics in Random Matrix Theory , 2012 .

[8]  J. Baik,et al.  The Oxford Handbook of Random Matrix Theory , 2011 .

[9]  L. Pastur,et al.  Eigenvalue Distribution of Large Random Matrices , 2011 .

[10]  Yan Fyodorov,et al.  Random matrix theory , 2011, Scholarpedia.

[11]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[12]  P. Forrester Log-Gases and Random Matrices , 2010 .

[13]  P. Forrester Log-Gases and Random Matrices (LMS-34) , 2010 .

[14]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[15]  Teodor Banica,et al.  On polynomial integrals over the orthogonal group , 2009, J. Comb. Theory, Ser. A.

[16]  Steven J. Miller,et al.  Nuclei, Primes and the Random Matrix Connection , 2009, Symmetry.

[17]  R. Killip,et al.  Eigenvalue statistics for CMV matrices: From Poisson to clock via random matrix ensembles , 2009 .

[18]  M. Yor,et al.  The characteristic polynomial of a random unitary matrix: A probabilistic approach , 2007, 0706.0333.

[19]  K. Parshall The British development of the theory of invariants (1841–1895) , 2006 .

[20]  F. Mezzadri How to generate random matrices from the classical compact groups , 2006, math-ph/0609050.

[21]  D. Braun Invariant integration over the orthogonal group , 2006, math-ph/0607064.

[22]  Elizabeth Meckes,et al.  Linear functions on the classical matrix groups , 2005, math/0509441.

[23]  C. Jarlskog A recursive parametrization of unitary matrices , 2005, math-ph/0504049.

[24]  R. Killip,et al.  Matrix models for circular ensembles , 2004, math/0410034.

[25]  Antonia Maria Tulino,et al.  Random Matrix Theory and Wireless Communications , 2004, Found. Trends Commun. Inf. Theory.

[26]  M. J. Cantero,et al.  Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle , 2002, math/0204300.

[27]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[28]  N. Snaith,et al.  Random Matrix Theory and ζ(1/2+it) , 2000 .

[29]  K. Życzkowski,et al.  Random unitary matrices , 1994 .

[30]  C. Tracy,et al.  Introduction to Random Matrices , 1992, hep-th/9210073.

[31]  T. W. Anderson,et al.  Generation of random orthogonal matrices , 1987 .

[32]  P. Diaconis,et al.  The Subgroup Algorithm for Generating Uniform Random Variables , 1987, Probability in the Engineering and Informational Sciences.

[33]  T. Crilly The rise of Cayley's invariant theory (1841–1862) , 1986 .

[34]  G. Stewart The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators , 1980 .

[35]  Don Weingarten,et al.  Asymptotic behavior of group integrals in the limit of infinite rank , 1978 .

[36]  Freeman J. Dyson,et al.  The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics , 1962 .

[37]  J. Gunson,et al.  Proof of a Conjecture by Dyson in the Statistical Theory of Energy Levels , 1962 .

[38]  A. Macbeath The volume of a certain set of matrices , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.

[39]  A. T. James,et al.  A generating function for averages over the orthogonal group , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[40]  Carl Ludwig Siegel,et al.  A Mean Value Theorem in Geometry of Numbers , 1945 .

[41]  H. Weyl The Classical Groups , 1940 .

[42]  J. Wishart THE GENERALISED PRODUCT MOMENT DISTRIBUTION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION , 1928 .

[43]  T. Andersona Multiple discoveries : Distribution of roots of determinantal equations , 2007 .

[44]  R. Speicher,et al.  Lectures on the Combinatorics of Free Probability: Unitary random matrices , 2006 .

[45]  O. Bohigas Recent Perspectives in Random Matrix Theory and Number Theory: Compound nucleus resonances, random matrices, quantum chaos , 2005 .

[46]  N. O'Connell,et al.  PATTERNS IN EIGENVALUES: THE 70TH JOSIAH WILLARD GIBBS LECTURE , 2003 .

[47]  M. Tkachenko,et al.  Topological Features of Topological Groups , 2001 .

[48]  P. Diaconis,et al.  Bounds for Kac's Master Equation , 1999 .

[49]  A. Norton Nuclei , 1997, Understanding the Universe.

[50]  Robert Lowen,et al.  Handbook of the History of General Topology , 1997 .

[51]  F. Dyson Correlations between eigenvalues of a random matrix , 1970 .

[52]  C. Porter Statistical Theories of Spectra: Fluctuations , 1965 .

[53]  A. Borji,et al.  Special Functions , 1964 .

[54]  A. Hurwitz,et al.  über die Erzeugung der Invarianten durch Integration , 1963 .

[55]  Edwin Hewitt,et al.  Structure of topological groups, integration theory, group representations , 1963 .

[56]  F. Murnaghan The unitary and rotation groups , 1962 .

[57]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[58]  R. F.,et al.  Mathematical Statistics , 1944, Nature.