Power system state estimation via feasible point pursuit

Power system state estimation (PSSE) is a critical task for grid operation efficiency and system stability. Physical laws dictate quadratic relationships between observable quantities and voltage state variables, hence rendering the PSSE problem nonconvex and NP-hard. Existing SE solvers largely rely on iterative optimization methods or semidefinite relaxation (SDR) techniques. Even when based on noiseless measurements, convergence of the former is sensitive to the initialization, while the latter is challenged by small-size measurements especially when voltage magnitudes are not available at all buses. At the price of running time, this paper proposes a novel feasible point pursuit (FPP)-based SE solver, which iteratively seeks feasible solutions for a nonconvex quadratically constrained quadratic programming reformulation of the weighted least-squares (WLS) SE problem. Numerical tests corroborate that the novel FPP-based SE markedly improves upon the Gauss-Newton based WLS and SDR-based SE alternatives, also when noisy measurements are available.

[1]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[2]  Antonio J. Conejo,et al.  Electric Energy Systems : Analysis and Operation , 2008 .

[3]  Alan L. Yuille,et al.  The Concave-Convex Procedure , 2003, Neural Computation.

[4]  Georgios B. Giannakis,et al.  Monitoring and Optimization for Power Grids: A Signal Processing Perspective , 2013, IEEE Signal Processing Magazine.

[5]  Phani Chavali,et al.  Distributed Power System State Estimation Using Factor Graphs , 2015, IEEE Transactions on Signal Processing.

[6]  Georgios B. Giannakis,et al.  Power System Nonlinear State Estimation Using Distributed Semidefinite Programming , 2014, IEEE Journal of Selected Topics in Signal Processing.

[7]  A. G. Expósito,et al.  Power system state estimation : theory and implementation , 2004 .

[8]  S. Low,et al.  Zero Duality Gap in Optimal Power Flow Problem , 2012, IEEE Transactions on Power Systems.

[9]  Katta G. Murty,et al.  Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..

[10]  Panos M. Pardalos,et al.  Quadratic programming with one negative eigenvalue is NP-hard , 1991, J. Glob. Optim..

[11]  Ali Abur,et al.  A robust WLAV state estimator using transformations , 1992 .

[12]  Thomas L. Marzetta,et al.  Parameter estimation problems with singular information matrices , 2001, IEEE Trans. Signal Process..

[13]  Javad Lavaei,et al.  Power system state estimation with a limited number of measurements , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[14]  William F. Tinney,et al.  Power Flow Solution by Newton's Method , 1967 .

[15]  Gang Wang,et al.  Online semidefinite programming for power system state estimation , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[16]  Ahmed S. Zamzam,et al.  Beyond Relaxation and Newton–Raphson: Solving AC OPF for Multi-Phase Systems With Renewables , 2016, IEEE Transactions on Smart Grid.

[17]  Ken Kreutz-Delgado,et al.  The Complex Gradient Operator and the CR-Calculus ECE275A - Lecture Supplement - Fall 2005 , 2009, 0906.4835.

[18]  Georgios B. Giannakis,et al.  Distributed Robust Power System State Estimation , 2012, IEEE Transactions on Power Systems.

[19]  Gang Wang,et al.  Power System State Estimation via Feasible Point Pursuit: Algorithms and Cramér-Rao Bound , 2018, IEEE Transactions on Signal Processing.

[20]  Yonina C. Eldar,et al.  Solving Systems of Random Quadratic Equations via Truncated Amplitude Flow , 2016, IEEE Transactions on Information Theory.

[21]  Ali Abur,et al.  On the use of PMUs in power system state estimation , 2011 .

[22]  Nikos D. Sidiropoulos,et al.  Feasible Point Pursuit and Successive Approximation of Non-Convex QCQPs , 2014, IEEE Signal Processing Letters.

[23]  References , 1971 .

[24]  Yu Zhang,et al.  Conic Relaxations for Power System State Estimation With Line Measurements , 2017, IEEE Transactions on Control of Network Systems.

[25]  Gang Wang,et al.  Stochastic Reactive Power Management in Microgrids With Renewables , 2014, IEEE Transactions on Power Systems.

[26]  Gang Wang,et al.  Ergodic Energy Management Leveraging Resource Variability in Distribution Grids , 2015, IEEE Transactions on Power Systems.

[27]  Vassilis Kekatos,et al.  Enhancing Observability in Distribution Grids Using Smart Meter Data , 2016, IEEE Transactions on Smart Grid.

[28]  Gert R. G. Lanckriet,et al.  On the Convergence of the Concave-Convex Procedure , 2009, NIPS.

[29]  R D Zimmerman,et al.  MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education , 2011, IEEE Transactions on Power Systems.

[30]  Adriaan van den Bos,et al.  A Cramer-Rao lower bound for complex parameters , 1994, IEEE Trans. Signal Process..

[31]  Na Li,et al.  A distributed Gauss-Newton method for power system state estimation , 2016, 2016 IEEE Power and Energy Society General Meeting (PESGM).

[32]  Pascal Van Hentenryck,et al.  AC-Feasibility on Tree Networks is NP-Hard , 2014, IEEE Transactions on Power Systems.

[33]  Karen Jackson,et al.  Great Achievements and Great Challenges , 2013 .

[34]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[35]  Stephen P. Boyd,et al.  General Heuristics for Nonconvex Quadratically Constrained Quadratic Programming , 2017, 1703.07870.

[36]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[37]  Gang Wang,et al.  Moving-horizon dynamic power system state estimation using semidefinite relaxation , 2013, 2014 IEEE PES General Meeting | Conference & Exposition.