A survey on trends of cross-media topic evolution map

Rapid advancements in internet and social media technologies have made information overload a rampant and widespread problem. Complex subjects, histories, or issues break down into branches, side stories, and intertwining narratives; a topic evolution map can assist in joining together and clarifying these disparate parts of an unfamiliar territory. This paper reviews the extant research on topic evolution map based on text and cross-media corpora over the past decade. We first define a series of necessary terms, then go on to describe the traditional topic evolution map per 1) topic evolution over time, based on the probabilistic generative model, and 2) topic evolution from a non-probabilistic perspective. Next, we discuss the current state of research on topic evolution map based on the cross-media corpus, including some open questions and possible future research directions. The main contribution of this review is in its construction of an evolution map that can be used to visualize and integrate the extant studies on topic modeling specifically in regards to cross-media research.

[1]  Laks V. S. Lakshmanan,et al.  Event Evolution Tracking from Streaming Social Posts , 2013, ArXiv.

[2]  Huimin Yu,et al.  Topic evolution based on the probabilistic topic model: a review , 2017, Frontiers of Computer Science.

[3]  Junjie Yao,et al.  Bursty event detection from collaborative tags , 2011, World Wide Web.

[4]  C. Lee Giles,et al.  Topic and Trend Detection in Text Collections Using Latent Dirichlet Allocation , 2009, ECIR.

[5]  Chih-Ping Wei,et al.  Discovering Event Evolution Graphs From News Corpora , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[6]  Dafna Shahaf,et al.  Trains of thought: generating information maps , 2012, WWW.

[7]  Dafna Shahaf,et al.  Connecting Two (or Less) Dots: Discovering Structure in News Articles , 2012, TKDD.

[8]  Eric P. Xing,et al.  Dynamic Non-Parametric Mixture Models and the Recurrent Chinese Restaurant Process: with Applications to Evolutionary Clustering , 2008, SDM.

[9]  Lifu Huang,et al.  Optimized Event Storyline Generation based on Mixture-Event-Aspect Model , 2013, EMNLP.

[10]  ChengXiang Zhai,et al.  Discovering evolutionary theme patterns from text: an exploration of temporal text mining , 2005, KDD '05.

[11]  Satoshi Morinaga,et al.  Tracking dynamics of topic trends using a finite mixture model , 2004, KDD.

[12]  James Allan,et al.  Introduction to topic detection and tracking , 2002 .

[13]  Yan Zhang,et al.  A cross-media evolutionary timeline generation framework based on iterative recommendation , 2013, ICMR '13.

[14]  Dafna Shahaf,et al.  Connecting the dots between news articles , 2010, IJCAI.

[15]  Dafna Shahaf,et al.  Information cartography: creating zoomable, large-scale maps of information , 2013, KDD.

[16]  Ellen M. Voorhees,et al.  TREC genomics special issue overview , 2009, Information Retrieval.

[17]  Thomas L. Griffiths,et al.  The Author-Topic Model for Authors and Documents , 2004, UAI.

[18]  Ravi Kumar,et al.  A graph-theoretic approach to extract storylines from search results , 2004, KDD.

[19]  Yan Zhang,et al.  Evolutionary timeline summarization: a balanced optimization framework via iterative substitution , 2011, SIGIR.

[20]  John D. Lafferty,et al.  Dynamic topic models , 2006, ICML.

[21]  Myra Spiliopoulou,et al.  Topic Evolution in a Stream of Documents , 2009, SDM.

[22]  Chih-Ping Wei,et al.  Tracing the Event Evolution of Terror Attacks from On-Line News , 2006, ISI.

[23]  Christopher C. Yang,et al.  TUT: a statistical model for detecting trends, topics and user interests in social media , 2012, CIKM.

[24]  Fu-Ren Lin,et al.  Individualized Storyline-based News Topic Retrospection , 2007, PACIS.

[25]  Benoit Huet,et al.  Socially motivated multimedia topic timeline summarization , 2013, SAM '13.

[26]  Thomas L. Griffiths,et al.  Probabilistic author-topic models for information discovery , 2004, KDD.

[27]  Junjie Yao,et al.  EventSearch: a system for event discovery and retrieval on multi-type historical data , 2012, KDD.

[28]  Björn W. Schuller,et al.  New avenues in knowledge bases for natural language processing , 2016, Knowl. Based Syst..

[29]  Jun Zhu,et al.  Timeline Analysis of Web News Events , 2008, ADMA.

[30]  Hua Lu,et al.  A unified model for stable and temporal topic detection from social media data , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[31]  Pietro Perona,et al.  A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[32]  Junjie Yao,et al.  Community Level Diffusion Extraction , 2015, SIGMOD Conference.

[33]  Yao Zhao,et al.  Learning a mid-level feature space for cross-media regularization , 2014, 2014 IEEE International Conference on Multimedia and Expo (ICME).

[34]  Yiming Yang,et al.  Topic Detection and Tracking Pilot Study Final Report , 1998 .

[35]  Andrew McCallum,et al.  Topics over time: a non-Markov continuous-time model of topical trends , 2006, KDD '06.

[36]  Song Tan,et al.  Cross media hyperlinking for search topic browsing , 2011, ACM Multimedia.

[37]  Daniel Barbará,et al.  On-line LDA: Adaptive Topic Models for Mining Text Streams with Applications to Topic Detection and Tracking , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[38]  Chong Wang,et al.  Continuous Time Dynamic Topic Models , 2008, UAI.

[39]  Jiawei Han,et al.  The Joint Inference of Topic Diffusion and Evolution in Social Communities , 2011, 2011 IEEE 11th International Conference on Data Mining.

[40]  Dongwoo Kim,et al.  Topic Chains for Understanding a News Corpus , 2011, CICLing.

[41]  Thomas Hofmann,et al.  Unsupervised Learning by Probabilistic Latent Semantic Analysis , 2004, Machine Learning.

[42]  Junjie Yao,et al.  Temporal and Social Context Based Burst Detection from Folksonomies , 2010, AAAI.

[43]  Yan Zhang,et al.  Summarizing Complex Events: a Cross-Modal Solution of Storylines Extraction and Reconstruction , 2013, EMNLP.

[44]  Eric P. Xing,et al.  A Nonparametric Mixture Model for Topic Modeling over Time , 2012, SDM.

[45]  Tim Oates,et al.  Finding story chains in newswire articles , 2012, 2012 IEEE 13th International Conference on Information Reuse & Integration (IRI).

[46]  Ramesh Nallapati,et al.  Event threading within news topics , 2004, CIKM '04.

[47]  Junjie Yao,et al.  User Group Oriented Temporal Dynamics Exploration , 2014, AAAI.

[48]  Qingming Huang,et al.  Cross media topic analytics based on synergetic content and user behavior modeling , 2014, 2014 IEEE International Conference on Multimedia and Expo (ICME).

[49]  Alexander J. Smola,et al.  Unified analysis of streaming news , 2011, WWW.

[50]  Dafna Shahaf,et al.  Metro maps of science , 2012, KDD.

[51]  Chen Lin,et al.  Generating event storylines from microblogs , 2012, CIKM.

[52]  Xiaoyan Zhu,et al.  Exploring the Interactions of Storylines from Informative News Events , 2014, Journal of Computer Science and Technology.

[53]  Chien Chin Chen,et al.  TSCAN: a novel method for topic summarization and content anatomy , 2008, SIGIR '08.

[54]  Chong Wang,et al.  Reading Tea Leaves: How Humans Interpret Topic Models , 2009, NIPS.

[55]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[57]  Alexander J. Smola,et al.  Online Inference for the Infinite Topic-Cluster Model: Storylines from Streaming Text , 2011, AISTATS.

[58]  ChengXiang Zhai,et al.  A mixture model for contextual text mining , 2006, KDD '06.

[59]  Chih-Ping Wei,et al.  Discovering Event Evolution Patterns From Document Sequences , 2007, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[60]  Jintao Li,et al.  The use of topic evolution to help users browse and find answers in news video corpus , 2007, ACM Multimedia.

[61]  Chong-Wah Ngo,et al.  Mining Event Structures from Web Videos , 2011, IEEE MultiMedia.

[62]  Bo Zhao,et al.  PET: a statistical model for popular events tracking in social communities , 2010, KDD.

[63]  Tao Li,et al.  Generating Pictorial Storylines Via Minimum-Weight Connected Dominating Set Approximation in Multi-View Graphs , 2012, AAAI.

[64]  Eric P. Xing,et al.  Timeline: A Dynamic Hierarchical Dirichlet Process Model for Recovering Birth/Death and Evolution of Topics in Text Stream , 2010, UAI.

[65]  Noriaki Kawamae,et al.  Trend analysis model: trend consists of temporal words, topics, and timestamps , 2011, WSDM '11.