Dynamic force spectroscopy using cantilever higher flexural modes

By means of force spectroscopy measurements performed with the cantilever first and second flexural modes under the frequency modulation detection method, the authors corroborate the validity of the relation between tip-surface interaction force and frequency shift for force spectroscopy acquisition using higher cantilever eigenmodes. They estimate a cantilever effective stiffness for the second eigenmode 73 times larger than the static stiffness. This large effective stiffness enables them to perform force spectroscopy with a cantilever oscillation amplitude (A0) as small as 3.6A. The authors provide experimental evidence that, at such small A0 values, normalized frequency shift curves deviate from a A03∕2 scaling and the signal-to-noise ratio is considerably enhanced.

[1]  D. Rugar,et al.  Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity , 1991 .

[2]  Franz J. Giessibl,et al.  Advances in atomic force microscopy , 2003, cond-mat/0305119.

[3]  Ricardo Garcia,et al.  Dynamic atomic force microscopy methods , 2002 .

[4]  P. Jelínek,et al.  Real topography, atomic relaxations, and short-range chemical interactions in atomic force microscopy: The case of the α − Sn ∕ Si ( 111 ) − ( 3 × 3 ) R 30 ° surface , 2006 .

[5]  John E. Sader,et al.  Accurate formulas for interaction force and energy in frequency modulation force spectroscopy , 2004 .

[6]  Ernst Meyer,et al.  Dynamics of damped cantilevers , 2000 .

[7]  Franz J. Giessibl,et al.  Atomic resolution on Si(111)-(7×7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork , 2000 .

[8]  Masayuki Abe,et al.  Drift-compensated data acquisition performed at room temperature with frequency modulation atomic force microscopy , 2007 .

[9]  F. Giessibl,et al.  Physical interpretation of frequency-modulation atomic force microscopy , 2000 .

[10]  Arvind Raman,et al.  Equivalent point-mass models of continuous atomic force microscope probes , 2007 .

[11]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[12]  P. Jelínek,et al.  Single atomic contact adhesion and dissipation in dynamic force microscopy. , 2006, Physical review letters.

[13]  H. Güntherodt,et al.  Quantitative Measurement of Short-Range Chemical Bonding Forces , 2001, Science.

[14]  Hideki Kawakatsu,et al.  An ultrasmall amplitude operation of dynamic force microscopy with second flexural mode , 2005 .

[15]  Masayuki Abe,et al.  Atom inlays performed at room temperature using atomic force microscopy , 2005, Nature materials.

[16]  P. Hansma,et al.  A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy , 1993 .

[17]  P. Jelínek,et al.  Mechanism for room-temperature single-atom lateral manipulations on semiconductors using dynamic force microscopy. , 2007, Physical review letters.

[18]  Masayuki Abe,et al.  Chemical identification of individual surface atoms by atomic force microscopy , 2007, Nature.

[19]  J. Mannhart,et al.  Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy , 1999 .

[20]  Franz J. Giessibl,et al.  Forces and frequency shifts in atomic-resolution dynamic-force microscopy , 1997 .

[21]  H. Hölscher,et al.  Quantitative analysis of dynamic-force-spectroscopy data on graphite(0001) in the contact and noncontact regimes , 2000 .

[22]  B. Gotsmann,et al.  Dynamic force spectroscopy using the frequency modulation technique with constant excitation , 2003 .

[23]  U. Dürig,et al.  Relations between interaction force and frequency shift in large-amplitude dynamic force microscopy , 1999 .

[24]  Hideki Kawakatsu,et al.  Atomically resolved dynamic force microscopy operating at 4.7 MHz , 2006 .

[25]  Masayuki Abe,et al.  Room-temperature reproducible spatial force spectroscopy using atom-tracking technique , 2005 .