Echolocation in the bat, Rhinolophus capensis: the influence of clutter, conspecifics and prey on call design and intensity

Echolocating bats are exposed not only to the echoes of their own calls, but often the signals of conspecifics and other bats. For species emitting short, frequency modulated signals e.g. vespertilionoids, adjustments in both the frequency and time domain have been observed in such situations. However, bats using long duration, constant frequency calls may confront special challenges, since these bats should be less able to avoid temporal and frequency overlap. Here we investigated echolocation call design in the highduty cycle bat, Rhinolophus capensis, as bats flew with either a conspecific or heterospecific in a large outdoor flight-room. We compared these recordings to those made of bats flying alone in the same flight-room, and in a smaller flight room, alone, and hunting tethered moths. We found no differences in duty cycle or peak frequency of the calls of R. capensis across conditions. However, in the presence of a conspecific or the vespertilionoid, Miniopterus natalensis, R. capensis produced longer frequency-modulated downward sweeps at the terminus of their calls with lower minimum frequencies than when flying alone. In the presence of the larger high-duty cycle bat, R. clivosus, R. capensis produced shorter calls than when flying alone or with a conspecific. These changes are similar to those of vespertilionoids when flying from open to more cluttered environments. They are not similar to those differences observed in vespertilionoids when flying with other bats. Also unlike vespertilinoids, R. capensis used calls 15 dB less intense in conspecific pairs than when alone.

[1]  H. Schnitzler,et al.  Echolocation by Insect-Eating Bats , 2001 .

[2]  Kamran Safi,et al.  Experimental evidence for group hunting via eavesdropping in echolocating bats , 2009, Proceedings of the Royal Society B: Biological Sciences.

[3]  H. Schnitzler,et al.  Echolocation signals of the greater horseshoe bat (Rhinolophus ferrumequinum) in transfer flight and during landing. , 1997, The Journal of the Acoustical Society of America.

[4]  M. Obrist Flexible bat echolocation: the influence of individual, habitat and conspecifics on sonar signal design , 1995, Behavioral Ecology and Sociobiology.

[5]  M. Smotherman,et al.  Context-dependent effects of noise on echolocation pulse characteristics in free-tailed bats , 2009, Journal of Comparative Physiology A.

[6]  R. Barclay,et al.  The allometry of echolocation call frequencies of insectivorous bats: why do some species deviate from the pattern? , 2007, Oecologia.

[7]  J. Simmons Response of the Doppler echolocation system in the bat, Rhinolophus ferrumequinum. , 1974, The Journal of the Acoustical Society of America.

[8]  Jeremy M. V. Rayner,et al.  Foraging behavior and echolocation of wild horseshoe bats Rhinolophus ferrumequinum and R. hipposideros (Chiroptera, Rhinolophidae) , 1989, Behavioral Ecology and Sociobiology.

[9]  J. Ratcliffe,et al.  Clutter and conspecifics: a comparison of their influence on echolocation and flight behaviour in Daubenton’s bat, Myotis daubentonii , 2014, Journal of Comparative Physiology A.

[10]  H. Schnitzler,et al.  Echolocation and obstacle avoidance in the hipposiderid batAsellia tridens , 1979, Journal of comparative physiology.

[11]  Puduru Viswanadha Reddy,et al.  Effects of competitive prey capture on flight behavior and sonar beam pattern in paired big brown bats, Eptesicus fuscus , 2010, Journal of Experimental Biology.

[12]  A. Zahn,et al.  Between-species jamming avoidance in Pipistrelles? , 2011, Journal of Comparative Physiology A.

[13]  B. Siemers,et al.  Behavioral Evidence for Community‐Wide Species Discrimination from Echolocation Calls in Bats , 2010, The American Naturalist.

[14]  N. Ulanovsky,et al.  Dynamics of jamming avoidance in echolocating bats , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[15]  A. Grinnell,et al.  Directional sensitivity of echolocation in the horseshoe bat,Rhinolophus ferrumequinum , 2004, Journal of comparative physiology.

[16]  H. Schnitzler,et al.  Collicular responses to the frequency modulated final part of echolocation sounds in Rhinolophus ferrum equinum , 2004, Zeitschrift für vergleichende Physiologie.

[17]  H. Schnitzler,et al.  Auditory fovea and Doppler shift compensation: adaptations for flutter detection in echolocating bats using CF-FM signals , 2011, Journal of Comparative Physiology A.

[18]  Dean A. Waters,et al.  Individual variation in the echolocation calls of three sympatric Indian hipposiderid bats, and an experimental attempt to jam bat echolocation , 1994 .

[19]  H. Schnitzler,et al.  Control of doppler shift compensation in the greater horseshoe bat,Rhinolophus ferrumequinum , 1973, Journal of comparative physiology.

[20]  Lasse Jakobsen,et al.  Echolocating bats emit a highly directional sonar sound beam in the field , 2008, Proceedings of the Royal Society B: Biological Sciences.

[21]  G. Neuweiler Auditory adaptations for prey capture in echolocating bats. , 1990, Physiological reviews.

[22]  Hiroshi Riquimaroux,et al.  On-board telemetry of emitted sounds from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude , 2008, Journal of Comparative Physiology A.

[23]  James A. Simmons,et al.  Big brown bats and June beetles: Multiple pursuit strategies in a seasonal acoustic predator–prey system , 2005 .

[24]  Hiroshi Riquimaroux,et al.  Convergence of reference frequencies by multiple CF–FM bats (Rhinolophus ferrumequinum nippon) during paired flights evaluated with onboard microphones , 2012, Journal of Comparative Physiology A.

[25]  N. Suga,et al.  Coordinated activities of middle-ear and laryngeal muscles in echolocating bats. , 1976, Science.

[26]  J. A. Simmons,et al.  Peripheral auditory tuning for fine frequency analysis by the CF-FM bat,Rhinolophus ferrumequinum , 2004, Journal of comparative physiology.

[27]  K. Burcham,et al.  Bats , 1940, Nature.

[28]  M. Brock Fenton,et al.  Conspecifics influence call design in the Brazilian free-tailed bat, Tadarida brasiliensis , 2004 .

[29]  E. Kalko,et al.  Intense echolocation calls from two `whispering' bats, Artibeus jamaicensis and Macrophyllum macrophyllum (Phyllostomidae) , 2009, Journal of Experimental Biology.

[30]  J. Fullard,et al.  Beware of bats, beware of birds: the auditory responses of eared moths to bat and bird predation , 2008 .

[31]  Surlykke Annemarie Convergent Acoustic Field of View in Echolocating Bats , 2012 .

[32]  N Suga,et al.  Biosonar behavior of mustached bats swung on a pendulum prior to cortical ablation. , 1990, Journal of neurophysiology.

[33]  Cynthia F. Moss,et al.  Behavioral Studies of Auditory Information Processing , 1995 .

[34]  E. Kalko,et al.  Echolocation call intensity and directionality in flying short-tailed fruit bats, Carollia perspicillata (Phyllostomidae). , 2011, The Journal of the Acoustical Society of America.

[35]  G. Schuller,et al.  Echo delay and overlap with emitted orientation sounds and doppler-shift compensation in the bat,Rhinolophus ferrumequinum , 2004, Journal of comparative physiology.

[36]  R. Rübsamen,et al.  Comparative collicular tonotopy in two bat species adapted to movement detection,Hipposideros speoris andMegaderma lyra , 1988, Journal of Comparative Physiology A.

[37]  G. Schuller The role of overlap of echo with outgoing echolocation sound in the batRhinolophus ferrumequinum , 1974, Naturwissenschaften.

[38]  Lee A. Miller,et al.  The acoustic behavior of four species of vespertilionid bats studied in the field , 1981, Journal of comparative physiology.

[39]  Echolocation behavior of rufous horseshoe bats hunting for insects in the flycatcher-style , 2004, Journal of Comparative Physiology A.

[40]  A. Novick Echolocation in bats: some aspects of pulse design. , 1971, American scientist.

[41]  H. Riquimaroux,et al.  Adaptive beam-width control of echolocation sounds by CF–FM bats, Rhinolophus ferrumequinum nippon, during prey-capture flight , 2013, Journal of Experimental Biology.

[42]  H. Schnitzler,et al.  Die Ultraschallortungslaute der Hufeisen-Fledermause (Chiroptera-Rhinolophidae) in vershiedenen Orientierungssituationen , 1968 .

[43]  C. Moss,et al.  Echolocation behavior of big brown bats, Eptesicus fuscus, in the field and the laboratory. , 2000, The Journal of the Acoustical Society of America.

[44]  R. Rübsamen,et al.  Foraging behaviour and echolocation in the rufous horseshoe bat (Rhinolophus rouxi) of Sri Lanka , 2004, Behavioral Ecology and Sociobiology.

[45]  J. Gaisler,et al.  Can pipistrelles, Pipistrellus pipistrellus (Schreber, 1774) and Pipistrellus pygmaeus (Leach, 1825), foraging in a group, change parameters of their signals? , 2007 .

[46]  G. Neuweiler Neurophysiologische Untersuchungen zum Echoortungssystem der Großen Hufeisennase Rhinolophus ferrum equinum Schreber, 1774 , 1970, Zeitschrift für vergleichende Physiologie.

[47]  Paul A. Faure,et al.  Evolution of high duty cycle echolocation in bats , 2012, Journal of Experimental Biology.

[48]  H. Schnitzler,et al.  Die Ultraschall-Ortungslaute der Hufeisen-Fledermäuse (Chiroptera-Rhinolophidae) in verschiedenen Orientierungssituationen , 1968, Zeitschrift für vergleichende Physiologie.

[49]  Nachum Ulanovsky,et al.  Rapid jamming avoidance in biosonar , 2007, Proceedings of the Royal Society B: Biological Sciences.

[50]  J. Simmons,et al.  Echolocation and pursuit of prey by bats. , 1979, Science.

[51]  D. Jacobs,et al.  The Relative Influence of Competition and Prey Defenses on the Phenotypic Structure of Insectivorous Bat Ensembles in Southern Africa , 2008, PloS one.

[52]  J. Simmons,et al.  Acoustic imaging in bat sonar: Echolocation signals and the evolution of echolocation , 1980, Journal of comparative physiology.

[53]  H. Schnitzler [Compensation of Doppler effects in horseshoe bats]. , 1967, Die Naturwissenschaften.