Voronoi diagram: An adaptive spatial tessellation for processes simulation
暂无分享,去创建一个
Jacynthe Pouliot | Mir Abolfazl Mostafavi | Leila Hashemi Beni | J. Pouliot | M. Mostafavi | L. Beni
[1] Leila Hashemi Beni,et al. 3D modeling for hydrogeological simulations in fractured geological media , 2008 .
[2] Jonathan Richard Shewchuk,et al. Star splaying: an algorithm for repairing delaunay triangulations and convex hulls , 2005, SCG.
[3] Barry Joe,et al. Construction of three-dimensional Delaunay triangulations using local transformations , 1991, Comput. Aided Geom. Des..
[4] Jan Verwer,et al. Application of a moving grid method to a class of 1D brine transport problems in porous media , 1992 .
[5] P. Knupp,et al. A moving mesh algorithm for 3-D regional groundwater flow with water table and seepage face , 1996 .
[6] Olivier Devillers,et al. The Delaunay Hierarchy , 2002, Int. J. Found. Comput. Sci..
[7] Mariette Yvinec,et al. Algorithmic geometry , 1998 .
[8] Leonidas J. Guibas,et al. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.
[9] Thomas Roos,et al. New Upper Bounds on Voronoi Diagrams of Moving Points , 1997, Nord. J. Comput..
[10] R. Whitehurst,et al. A free Lagrange method for gas dynamics , 1995 .
[11] Herbert Edelsbrunner,et al. Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.
[12] Rolf Klein,et al. Java Applets for the Dynamic Visualization of Voronoi Diagrams , 2003, Computer Science in Perspective.
[13] Leonidas J. Guibas,et al. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.
[14] Christopher M. Gold. AN OUTLINE OF AN EVENT-DRIVEN SPATIAL DATA STRUCTURE FOR MANAGING TIME-VARYING MAPS , 1999 .
[15] Atsuyuki Okabe,et al. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.
[16] D. Hale. Atomic Meshes - from Seismic Images to Reservoir Simulation , 2002 .
[17] Leonidas J. Guibas,et al. An empirical comparison of techniques for updating Delaunay triangulations , 2004, SCG '04.
[18] H. Ledoux. Modelling three-dimensional fields in geoscience with the Voronoi diagram and its dual , 2006 .
[19] J. Shewchuk,et al. Delaunay refinement mesh generation , 1997 .
[20] James F. Price. Lagrangian and Eulerian Representations of Fluid Flow : Part I , Kinematics and the Equations of Motion , 2005 .
[21] Mir Abolfazl Mostafavi,et al. A global kinetic spatial data structure for a marine simulation , 2004, Int. J. Geogr. Inf. Sci..
[22] C. Lawson. Software for C1 interpolation , 1977 .
[23] Mir Abolfazl Mostafavi,et al. Development of a global dynamic data structure , 2002 .
[24] C. Lawson. Software for C1 Surface Interpolation , 1977 .
[25] Omar Ghattas,et al. Dynamic-mesh finite element method for Lagrangian computational fluid dynamics , 2002 .
[26] C. Gold,et al. A spatial data structure integrating GIS and simulation in a marine environment , 1995 .
[27] S. P. Neuman. Adaptive Eulerian–Lagrangian finite element method for advection–dispersion , 1984 .