NMR-restrained docking of a peptidic inhibitor to the N-terminal domain of the phosphoenolpyruvate:sugar phosphotransferase enzyme I

[1]  G C Roberts,et al.  NMR spectroscopy in structure-based drug design. , 1999, Current opinion in biotechnology.

[2]  J. Moore,et al.  NMR screening in drug discovery. , 1999, Current opinion in biotechnology.

[3]  D. S. Garrett,et al.  Solution structure of the 40,000 Mr phosphoryl transfer complex between the N-terminal domain of enzyme I and HPr , 1999, Nature Structural Biology.

[4]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998, J. Comput. Chem..

[5]  D. S. Garrett,et al.  Tautomeric state and pKa of the phosphorylated active site histidine in the N‐terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate: Sugar phosphotransferase system , 1998, Protein science : a publication of the Protein Society.

[6]  K. Wüthrich,et al.  Torsion angle dynamics for NMR structure calculation with the new program DYANA. , 1997, Journal of molecular biology.

[7]  B. Erni,et al.  Phage display selection of peptides against enzyme I of the phosphoenolpyruvate–sugar phosphotransferase system (PTS) , 1997, Molecular microbiology.

[8]  Todd J. A. Ewing,et al.  Critical evaluation of search algorithms for automated molecular docking and database screening , 1997, J. Comput. Chem..

[9]  D. S. Garrett,et al.  Identification by NMR of the binding surface for the histidine-containing phosphocarrier protein HPr on the N-terminal domain of enzyme I of the Escherichia coli phosphotransferase system. , 1997, Biochemistry.

[10]  P Willett,et al.  Development and validation of a genetic algorithm for flexible docking. , 1997, Journal of molecular biology.

[11]  Thomas Lengauer,et al.  A fast flexible docking method using an incremental construction algorithm. , 1996, Journal of molecular biology.

[12]  David S. Goodsell,et al.  Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4 , 1996, J. Comput. Aided Mol. Des..

[13]  D. Liao,et al.  The first step in sugar transport: crystal structure of the amino terminal domain of enzyme I of the E. coli PEP: sugar phosphotransferase system and a model of the phosphotransfer complex with HPr. , 1996, Structure.

[14]  Daniel A. Gschwend,et al.  Orientational sampling and rigid-body minimization in molecular docking revisited: On-the-fly optimization and degeneracy removal , 1996, J. Comput. Aided Mol. Des..

[15]  B. L. de Groot,et al.  Phosphorylation‐induced torsion‐angle strain in the active center of HPr, detected by NMR and restrained molecular dynamics refinement , 1996, Protein science : a publication of the Protein Society.

[16]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[17]  B. Erni,et al.  A String of Enzymes, Purification and Characterization of a Fusion Protein Comprising the Four Subunits of the Glucose Phosphotransferase System of Escherichia coli(*) , 1995, The Journal of Biological Chemistry.

[18]  K Wüthrich,et al.  The program XEASY for computer-supported NMR spectral analysis of biological macromolecules , 1995, Journal of biomolecular NMR.

[19]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[20]  Gennady M Verkhivker,et al.  Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. , 1995, Chemistry & biology.

[21]  G. Robillard,et al.  High-resolution structure of the phosphorylated form of the histidine-containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from NMR-NOE data. , 1995, Journal of molecular biology.

[22]  A. Gronenborn,et al.  Structures of protein complexes by multidimensional heteronuclear magnetic resonance spectroscopy. , 1995, Critical reviews in biochemistry and molecular biology.

[23]  R. Klevit,et al.  Structural consequences of histidine phosphorylation: NMR characterization of the phosphohistidine form of histidine-containing protein from Bacillus subtilis and Escherichia coli. , 1994, Biochemistry.

[24]  Wand Aj,et al.  Nuclear magnetic resonance studies of protein-peptide complexes. , 1994 .

[25]  A. Petros,et al.  Nuclear magnetic resonance methods for studying protein-ligand complexes. , 1994, Methods in enzymology.

[26]  R. Klevit,et al.  Unraveling a bacterial hexose transport pathway. , 1994, Current opinion in structural biology.

[27]  L. Delbaere,et al.  The 2.0-A resolution structure of Escherichia coli histidine-containing phosphocarrier protein HPr. A redetermination. , 1994, The Journal of biological chemistry.

[28]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[29]  O. Herzberg,et al.  An atomic model for protein-protein phosphoryl group transfer. , 1993, The Journal of biological chemistry.

[30]  B. Sykes,et al.  Theoretical evaluation of the two-dimensional transferred nuclear overhauser effect , 1991 .

[31]  D. Stüber,et al.  System for High-Level Production in Escherichia coli and Rapid Purification of Recombinant Proteins: Application to Epitope Mapping, Preparation of Antibodies, and Structure—Function Analysis , 1990 .

[32]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[33]  H. Blöcker,et al.  Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. , 1986, Gene.

[34]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[35]  A. Gronenborn,et al.  Theory of the time dependent transferred nuclear Overhauser effect: Applications to structural analysis of ligand-protein complexes in solution , 1983 .

[36]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.