Interactive Curvature Tensor Visualization on Digital Surfaces

Interactive visualization is a very convenient tool to explore complex scientific data or to try different parameter settings for a given processing algorithm. In this article, we present a tool to efficiently analyze the curvature tensor on the boundary of potentially large and dynamic digital objects mean and Gaussian curvatures, principal curvatures, principal directions and normal vector field. More precisely, we combine a fully parallel pipeline on GPU to extract an adaptive triangulated isosurface of the digital object, with a curvature tensor estimation at each surface point based on integral invariants. Integral invariants being parametrized by a given ball radius, our proposal allows to explore interactively different radii and thus select the appropriate scale at which the computation is performed and visualized.

[1]  John D. Owens,et al.  Voxel-Based Terrain for Real-Time Virtual Simulations By , 2011 .

[2]  Shi-Min Hu,et al.  Principal curvatures from the integral invariant viewpoint , 2007, Comput. Aided Geom. Des..

[3]  Jacques-Olivier Lachaud,et al.  Multigrid convergent principal curvature estimators in digital geometry , 2014, Comput. Vis. Image Underst..

[4]  Johannes Wallner,et al.  Integral invariants for robust geometry processing , 2009, Comput. Aided Geom. Des..

[5]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[6]  Jacques-Olivier Lachaud,et al.  Integral Based Curvature Estimators in Digital Geometry , 2013, DGCI.

[7]  Florence Denis,et al.  Out-of-core adaptive iso-surface extraction from binary volume data , 2014, Graph. Model..

[8]  Mohan S. Kankanhalli,et al.  Adaptive marching cubes , 1995, The Visual Computer.

[9]  Christopher DeCoro,et al.  Real-Time Isosurface Extraction Using the GPU Programmable Geometry Pipeline , 2007, SIGGRAPH Courses.

[10]  Jacques-Olivier Lachaud,et al.  Scale-space feature extraction on digital surfaces , 2015, Comput. Graph..

[11]  Thomas Lewiner,et al.  Fast Generation of Pointerless Octree Duals , 2010, Comput. Graph. Forum.

[12]  D. Coeurjolly,et al.  Robust and Convergent Curvature and Normal Estimators with Digital Integral Invariants , 2017 .

[13]  Irene Gargantini,et al.  An effective way to represent quadtrees , 1982, CACM.

[14]  Scott Schaefer,et al.  Dual marching cubes: primal contouring of dual grids , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[15]  Jacques-Olivier Lachaud,et al.  Parameter-Free and Multigrid Convergent Digital Curvature Estimators , 2014, DGCI.