Observer-based projective synchronization of fractional systems via a scalar signal: application to hyperchaotic Rössler systems

This paper introduces an observer-based approach to achieve projective synchronization in fractional-order chaotic systems using a scalar synchronizing signal. The proposed method, which enables a linear fractional error system to be obtained, exploits the Kalman decomposition and a proper stability criterion in order to stabilize the error dynamics at the origin. The approach combines three desirable features, that is, the theoretical foundation of the method, the adoption of a scalar synchronizing signal, and the exact analytical solution of the fractional error system written in terms of Mittag-Leffler function. Finally, the projective synchronization of the fractional-order hyperchaotic Rössler systems is illustrated in detail.

[1]  Shangbo Zhou,et al.  Chaos synchronization of the fractional-order Chen's system , 2009 .

[2]  A. Elwakil,et al.  Design equations for fractional-order sinusoidal oscillators: Four practical circuit examples , 2008 .

[3]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[4]  Ronnie Mainieri,et al.  Projective Synchronization In Three-Dimensional Chaotic Systems , 1999 .

[5]  R. Gorenflo,et al.  Fractional Calculus: Integral and Differential Equations of Fractional Order , 2008, 0805.3823.

[6]  Chunguang Li,et al.  Chaos in the fractional order Chen system and its control , 2004 .

[7]  Giuseppe Grassi,et al.  Hyperchaos in the fractional-Order RÖssler System with Lowest-Order , 2009, Int. J. Bifurc. Chaos.

[8]  Long-Jye Sheu,et al.  A speech encryption using fractional chaotic systems , 2011 .

[9]  C. Chee,et al.  Secure digital communication using controlled projective synchronisation of chaos , 2005 .

[10]  Daolin Xu,et al.  Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems , 2005 .

[11]  J. J. Quintana,et al.  Modeling of Electrochemical Double Layer Capacitors by Means of Fractional Impedance , 2007 .

[12]  B. Maundy,et al.  On a multivibrator that employs a fractional capacitor , 2009 .

[13]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[14]  Shiquan Shao,et al.  Controlling general projective synchronization of fractional order Rossler systems , 2009 .

[15]  Ahmed S Elwakil,et al.  Fractional-order circuits and systems: An emerging interdisciplinary research area , 2010, IEEE Circuits and Systems Magazine.

[16]  Giuseppe Grassi,et al.  Projective Synchronization via a Linear Observer: Application to Time-Delay, Continuous-Time and Discrete-Time Systems , 2007, Int. J. Bifurc. Chaos.

[17]  Hsien-Keng Chen,et al.  Chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen–Lee systems , 2010 .

[18]  S. S. Yang,et al.  Synchronizing hyperchaos with a scalar signal by parameter controlling , 1997 .

[19]  Zaid M. Odibat,et al.  Analytic study on linear systems of fractional differential equations , 2010, Comput. Math. Appl..

[20]  O. Rössler An equation for hyperchaos , 1979 .

[21]  M. Haeri,et al.  Synchronization of chaotic fractional-order systems via active sliding mode controller , 2008 .

[22]  Yao-Lin Jiang,et al.  Generalized projective synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal , 2008 .

[23]  Qigui Yang,et al.  Chaos in fractional conjugate Lorenz system and its scaling attractors , 2010 .

[24]  Giuseppe Grassi,et al.  Experimental realization of observer-based hyperchaos synchronization , 2001 .

[25]  Elena Grigorenko,et al.  Chaotic dynamics of the fractional Lorenz system. , 2003, Physical review letters.

[26]  Peng,et al.  Synchronizing hyperchaos with a scalar transmitted signal. , 1996, Physical review letters.

[27]  Chunguang Li,et al.  Chaos and hyperchaos in the fractional-order Rössler equations , 2004 .

[28]  Wang Xing-Yuan,et al.  Dynamic analysis of a new chaotic system with fractional order and its generalized projective synchronization , 2010 .

[29]  S. Mascolo,et al.  A system theory approach for designing cryptosystems based on hyperchaos , 1999 .

[30]  Jun-Guo Lu,et al.  Chaotic dynamics and synchronization of fractional-order Arneodo’s systems , 2005 .

[31]  W. Deng,et al.  Chaos synchronization of the fractional Lü system , 2005 .

[32]  Arak M. Mathai,et al.  Special Functions for Applied Scientists , 2008 .

[33]  Giuseppe Grassi,et al.  Fractional-Order Chua's Circuit: Time-Domain Analysis, bifurcation, Chaotic Behavior and Test for Chaos , 2008, Int. J. Bifurc. Chaos.

[34]  Xiangjun Wu,et al.  Generalized projective synchronization of the fractional-order Chen hyperchaotic system , 2009 .

[35]  S. Mascolo,et al.  Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal , 1997 .

[36]  Giuseppe Grassi,et al.  Bifurcation and Chaos in the fractional-Order Chen System via a Time-Domain Approach , 2008, Int. J. Bifurc. Chaos.

[37]  Yong Feng,et al.  Synchronization of uncertain chaotic systems using a single transmission channel , 2008 .

[38]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[39]  Margarita Rivero,et al.  On systems of linear fractional differential equations with constant coefficients , 2007, Appl. Math. Comput..

[40]  Daolin Xu,et al.  Chaos synchronization of the Chua system with a fractional order , 2006 .

[41]  Jianbing Hu,et al.  Synchronizing chaotic systems using control based on a special matrix structure and extending to fractional chaotic systems , 2010 .

[42]  S. Mascolo,et al.  Synchronisation of hyperchaotic oscillators using a scalar signal , 1998 .

[43]  C. Y. Chee,et al.  Chaos-based M-ary digital communication technique using controlled projective synchronisation , 2006 .

[44]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[45]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[46]  Arbitrary observer scaling of all chaotic drive system states via a scalar synchronizing signal , 2009 .

[47]  邵仕泉,et al.  Projective synchronization in coupled fractional order chaotic Rossler system and its control , 2007 .

[48]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[49]  Xiangjun Wu,et al.  A new chaotic system with fractional order and its projective synchronization , 2010 .

[50]  Chen Aimin,et al.  A New Scheme to Projective Synchronization of Fractional-Order Chaotic Systems , 2010 .