Measuring our Universe from Galaxy Redshift Surveys

Galaxy redshift surveys have achieved significant progress over the last couple of decades. Those surveys tell us in the most straightforward way what our local Universe looks like. While the galaxy distribution traces the bright side of the Universe, detailed quantitative analyses of the data have even revealed the dark side of the Universe dominated by non-baryonic dark matter as well as more mysterious dark energy (or Einstein’s cosmological constant). We describe several methodologies of using galaxy redshift surveys as cosmological probes, and then summarize the recent results from the existing surveys. Finally we present our views on the future of redshift surveys in the era of precision cosmology.

[1]  R. Sachs,et al.  Isotropic Solutions of the Einstein‐Liouville Equations , 1968 .

[2]  Y. Suto,et al.  Probability Distribution Function of Cosmological Density Fluctuations from a Gaussian Initial Condition: Comparison of One-Point and Two-Point Lognormal Model Predictions with N-Body Simulations , 2001, astro-ph/0105218.

[3]  A. Szalay,et al.  Apparent clustering of intermediate-redshift galaxies as a probe of dark energy. , 2002, Physical review letters.

[4]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Tests of Gaussianity , 2003 .

[5]  Thanu Padmanabhan,et al.  Cosmology: The Origin and Evolution of Cosmic Structure , 1996 .

[6]  M.Magliocchetti,et al.  The Halo Distribution of 2dF Galaxies , 2003, astro-ph/0304003.

[7]  J. Newman,et al.  The DEEP2 Redshift Survey , 2000, astro-ph/0012189.

[8]  J. Peacock,et al.  Non-linear evolution of cosmological power spectra , 1996, astro-ph/9603031.

[9]  B. Paczyński,et al.  An evolution free test for non-zero cosmological constant , 1979, Nature.

[10]  J. Peacock Implications of 2d FGRS Results on Cosmic Structure , 2003, astro-ph/0301042.

[11]  et al,et al.  Galaxy Clustering in Early SDSS Redshift Data , 2001, astro-ph/0106476.

[12]  W. Saslaw,et al.  Gravitational Physics of Stellar and Galactic Systems: Finite spherical systems – clusters of galaxies, galactic nuclei, globular clusters , 1985 .

[13]  R. Ellis,et al.  A measurement of the cosmological mass density from clustering in the 2dF Galaxy Redshift Survey , 2001, Nature.

[14]  Matthew Colless The 2dF Galaxy Redshift Survey , 1999 .

[15]  Phillip James Edwin Peebles,et al.  Statistical analysis of catalogs of extragalactic objects. V. Three-point correlation function for the galaxy distribution in the Zwicky catalog. , 1975 .

[16]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[17]  O. Lahav,et al.  The large-scale smoothness of the Universe , 1998, Nature.

[18]  Y. Jing,et al.  Accurate Fitting Formula for the Two-Point Correlation Function of Dark Matter Halos , 1998, astro-ph/9805202.

[19]  S Cole,et al.  New upper limit on the total neutrino mass from the 2 degree field galaxy redshift survey. , 2002, Physical review letters.

[20]  Stephen S. Holt,et al.  The emergence of cosmic structure : thirteenth Astrophysics Conference, College Park, MD, 7-9 October 2002 , 2003 .

[21]  B. Jain,et al.  The three‐point correlation function in cosmology , 2002, astro-ph/0209167.

[22]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of the Universe , 2002, astro-ph/0212375.

[23]  J. Frieman,et al.  Sloan Digital Sky Survey , 1993 .

[24]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[25]  T. Matsubara,et al.  SCALE DEPENDENCE OF THREE-POINT CORRELATION FUNCTIONS : MODEL PREDICTIONS AND REDSHIFT-SPACE CONTAMINATION , 1994 .

[26]  J. Fry The Evolution of Bias , 1996 .

[27]  O. Lahav,et al.  The role of priors in deriving upper limits on neutrino masses from the 2dFGRS and WMAP , 2003 .

[28]  S. White,et al.  An analytic model for the spatial clustering of dark matter haloes , 1995, astro-ph/9512127.

[29]  J. Gott,et al.  Minkowski Functionals of SDSS Galaxies I : Analysis of Excursion Sets , 2003, astro-ph/0304455.

[30]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[31]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[32]  A. Evrard,et al.  Clustering of Dark Matter Halos on the Light Cone: Scale, Time, and Mass Dependence of the Halo Biasing in the Hubble Volume Simulations , 2001, astro-ph/0110061.

[33]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[34]  K. Rudnicki The cosmological principles , 1995 .

[35]  A. Szalay,et al.  Cosmological Parameters from Redshift-Space Correlations , 2002, astro-ph/0203358.

[36]  U. Pen Reconstructing Nonlinear Stochastic Bias from Velocity Space Distortions , 1997, astro-ph/9711180.

[37]  T. Matsubara Phase Correlations in Non-Gaussian Fields , 2003, astro-ph/0303278.

[38]  R. Nichol,et al.  Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.

[39]  E. Blaufuss,et al.  Tau neutrinos favored over sterile neutrinos in atmospheric muon neutrino oscillations. , 2000, Physical Review Letters.

[40]  T. Matsubara Peculiar Velocity Effect on Galaxy Correlation Functions in Nonlinear Clustering Regime , 1994 .

[41]  R. Wechsler,et al.  Galaxy halo occupation at high redshift , 2001, astro-ph/0106293.

[42]  Alexander S. Szalay,et al.  Galaxy Clustering in Early Sloan Digital Sky Survey Redshift Data , 2002 .

[43]  T. Matsubara Statistics of Smoothed Cosmic Fields in Perturbation Theory. I. Formulation and Useful Formulae in Second-Order Perturbation Theory , 2000, astro-ph/0006269.

[44]  James Liebert,et al.  The two micron all sky survey , 1994 .

[45]  Avishai Dekel,et al.  Stochastic Nonlinear Galaxy Biasing , 1998, astro-ph/9806193.

[46]  Y. Jing,et al.  Confronting Cold Dark Matter Cosmologies with Strong Clustering of Lyman Break Galaxies at z ~ 3 , 1997, astro-ph/9710090.

[47]  Nonlinear Stochastic Biasing of Peaks and Halos : Scale-Dependence, Time-Evolution, and Redshift-Space Distortion from Cosmological N-body Simulations , 2001 .

[48]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: stochastic relative biasing between galaxy populations , 2004, astro-ph/0404275.

[49]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: The Amplitudes of fluctuations in the 2dFGRS and the CMB, and implications for galaxy biasing , 2001, astro-ph/0112162.

[50]  Ravi Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[51]  R. Nichol,et al.  On Departures from a Power Law in the Galaxy Correlation Function , 2003, astro-ph/0301280.

[52]  Cambridge,et al.  The 2-10 keV X-Ray Background Dipole and Its Cosmological Implications , 1999, astro-ph/9908187.

[53]  R. Nichol,et al.  Three-Point Correlation Functions of SDSS Galaxies in Redshift Space: Morphology, Color, and Luminosity Dependence , 2004, astro-ph/0403638.

[54]  Gavin Dalton,et al.  Evidence for a non-zero Λ and a low matter density from a combined analysis of the 2dF Galaxy Redshift Survey and cosmic microwave background anisotropies , 2001, astro-ph/0109152.

[55]  Y. Suto,et al.  Nonlinear Stochastic Biasing of Galaxies and Dark Halos in Cosmological Hydrodynamic Simulations , 2001, astro-ph/0104361.

[56]  M. Lachièze‐Rey,et al.  Statistics of the galaxy distribution , 1989 .

[57]  T. Buchert,et al.  Robust Morphological Measures for Large-Scale Structure in the Universe , 1993 .

[58]  B. Jones,et al.  A lognormal model for the cosmological mass distribution. , 1991 .

[59]  Y. Suto,et al.  Nonlinear Stochastic Biasing from the Formation Epoch Distribution of Dark Halos , 2000, astro-ph/0004288.

[60]  O. Lahav,et al.  Upper limits on neutrino masses from the 2dFGRS and WMAP: the role of priors , 2003, astro-ph/0303089.

[61]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey : higher-order galaxy correlation functions , 2004, astro-ph/0401434.

[62]  E. Gaztañaga,et al.  Probing the statistics of primordial fluctuations and their evolution , 1993 .

[63]  Measuring the cosmological constant with redshift surveys , 1996, astro-ph/9605017.

[64]  J. Farine,et al.  Measurement of the rate of ve + d → p + p + e- interactions produced by 8B solar neutrinos at the sudbury neutrino observatory , 2001 .

[65]  H. Ford,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[66]  T. Buchert,et al.  Beyond Genus Statistics: A Unifying Approach to the Morphology of Cosmic Structure , 1997, astro-ph/9702130.

[67]  Y. Suto,et al.  Statistics of peaks in cosmological nonlinear density fields , 1991 .

[68]  S. Maddox,et al.  The Stromlo-APM redshift survey. I: The luminosity function and space density of galaxies , 1992 .

[69]  Y. Jing,et al.  Deciphering cosmological information from redshift surveys of high-z objects - The cosmological light-cone effect and redshift-space distortion , 1999, astro-ph/9901179.

[70]  Scott M. Croom,et al.  The 2dF QSO Redshift Survey — I. The optical luminosity function of quasi-stellar objects , 2000 .

[71]  Y. Jing,et al.  Analytical approximations to the low-order statistics of dark matter distributions , 1996, astro-ph/9607143.

[72]  O. Lahav,et al.  The 2dF Galaxy Redshift Survey: The bias of galaxies and the density of the Universe , 2001, astro-ph/0112161.

[73]  N. Kaiser On the spatial correlations of Abell clusters , 1984 .

[74]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: the dependence of galaxy clustering on luminosity and spectral type , 2001, astro-ph/0112043.

[75]  Peter Coles,et al.  Cosmology: The Origin and Evolution of Cosmic Structure , 1995 .

[76]  E. Gaztañaga,et al.  Structure Formation in the Universe , 2003 .

[77]  R. Ellis,et al.  Parameter constraints for flat cosmologies from cosmic microwave background and 2dFGRS power spectra , 2002, astro-ph/0206256.

[78]  T. Matsubara,et al.  Cosmological Redshift Distortion: Deceleration, Bias, and Density Parameters from Future Redshift Surveys of Galaxies , 1997, astro-ph/9706034.

[79]  Scott M. Croom,et al.  The 2dF QSO Redshift Survey - I. The Optical QSO Luminosity Function , 2000 .

[80]  Y. Suto,et al.  Light-Cone Effect on Clustering Statistics in Cosmological Redshift Space , 1999, astro-ph/9912367.

[81]  Y. Suto,et al.  The Cosmological Light-Cone Effect on the Power Spectrum of Galaxies and Quasars in Wide-Field Redshift Surveys , 1999, astro-ph/9908006.

[82]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[83]  U. Seljak Analytic model for galaxy and dark matter clustering , 2000, astro-ph/0001493.

[84]  E. Hubble THE DISTRIBUTION OF EXTRA-GALACTIC NEBULAE. , 1932, Science.

[85]  L. M. A a , 2004 .

[86]  J. Gott,et al.  The Sponge-like Topology of Large-Scale Structure in the Universe , 1986 .

[87]  Phillip James Edwin Peebles,et al.  Statistical analysis of catalogs of extragalactic objects. VII. Two- and three-point correlation functions for the high-resolution Shane-Wirtanen catalog of galaxies , 1977 .

[88]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: galaxy clustering per spectral type , 2003, astro-ph/0303668.

[89]  Distributions of Fourier modes of cosmological density fields. , 1994, Physical review. D, Particles and fields.

[90]  T. Matsubara,et al.  Nonlinear Evolution of Genus in a Primordial Random Gaussian Density Field , 1995, astro-ph/9509129.

[91]  R. L. Peterson,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[92]  Y. Jing,et al.  Cosmological Redshift-Space Distortion on Clustering of High-Redshift Objects: Correction for Nonlinear Effects in the Power Spectrum and Tests with N-Body Simulations , 1999, astro-ph/9907438.

[93]  J. Farine,et al.  Measurement of the rate of νe+d → p+p+e− interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory , 2002 .

[94]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[95]  Non-linear stochastic galaxy biasing in cosmological simulations , 1999, astro-ph/9912073.

[96]  Y. Suto Exploring Nonlinear Gravitational Clustering Phenomena with Cosmological N-Body Simulations , 1993 .

[97]  M. Colless Cosmological results from the 2dF Galaxy Redshift Survey , 2003, astro-ph/0305051.

[98]  T. Matsubara,et al.  The Distribution Function of the Phase Sum as a Signature of Phase Correlations Induced by Nonlinear Gravitational Clustering , 2003, astro-ph/0308472.

[99]  Simon D. M. White,et al.  The hierarchy of correlation functions and its relation to other measures of galaxy clustering , 1979 .

[100]  D. Madgwick,et al.  The nature of the relative bias between galaxies of different spectral type in 2dFGRS , 2004, astro-ph/0404276.

[101]  S. Colombi,et al.  Two-point correlation functions on the light cone: testing theoretical predictions against N-body simulations , 2000, astro-ph/0010287.

[102]  R. Wagoner,et al.  Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity , 1973 .

[103]  M. Magliocchetti,et al.  The halo distribution of 2dF galaxies , 2003 .

[104]  Y. Suto,et al.  Two-Point Correlation Function of High-Redshift Objects: An Explicit Formulation on a Light-Cone Hypersurface , 1999, astro-ph/9812486.

[105]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: hierarchical galaxy clustering , 2004, astro-ph/0401405.

[106]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[107]  Max Tegmark,et al.  Weighing Neutrinos with Galaxy Surveys , 1997, astro-ph/9712057.

[108]  T. Matsubara Analytic Expression of the Genus in a Weakly Non-Gaussian Field Induced by Gravity , 1994, astro-ph/9405037.