A Bayesian Framework for Persistent Homology

Persistence diagrams offer a way to summarize topological and geometric properties latent in datasets. While several methods have been developed that utilize persistence diagrams in statistical inference, a full Bayesian treatment remains absent. This paper, relying on the theory of point processes, presents a Bayesian framework for inference with persistence diagrams relying on a substitution likelihood argument. In essence, we model persistence diagrams as Poisson point processes with prior intensities and compute posterior intensities by adopting techniques from the theory of marked point processes. We then propose a family of conjugate prior intensities via Gaussian mixtures to obtain a closed form of the posterior intensity. Finally we demonstrate the utility of this Bayesian framework with a classification problem in materials science using Bayes factors.

[1]  Sivaraman Balakrishnan,et al.  Confidence sets for persistence diagrams , 2013, The Annals of Statistics.

[2]  Moo K. Chung,et al.  Persistent Homology in Sparse Regression and Its Application to Brain Morphometry , 2014, IEEE Transactions on Medical Imaging.

[3]  Vasileios Maroulas,et al.  Signal classification with a point process distance on the space of persistence diagrams , 2018, Adv. Data Anal. Classif..

[4]  S. Mukherjee,et al.  Topological Consistency via Kernel Estimation , 2014, 1407.5272.

[5]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[6]  Cormac Toher,et al.  AFLOW-SYM: platform for the complete, automatic and self-consistent symmetry analysis of crystals. , 2018, Acta crystallographica. Section A, Foundations and advances.

[7]  L. M. M.-T. Theory of Probability , 1929, Nature.

[8]  Danielle S Bassett,et al.  The importance of the whole: Topological data analysis for the network neuroscientist , 2018, Network Neuroscience.

[9]  S. Schmidt,et al.  Robust structural identification via polyhedral template matching , 2016, 1603.05143.

[10]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .

[11]  Andrey Babichev,et al.  Persistent Memories in Transient Networks , 2016, 1602.00681.

[12]  S. Mukherjee,et al.  Probability measures on the space of persistence diagrams , 2011 .

[13]  Yiying Tong,et al.  Persistent homology for the quantitative prediction of fullerene stability , 2014, J. Comput. Chem..

[14]  Firas A. Khasawneh,et al.  Chatter detection in turning using persistent homology , 2016 .

[15]  I. Tanaka,et al.  $\texttt{Spglib}$: a software library for crystal symmetry search , 2018, 1808.01590.

[16]  David J. Keffer,et al.  Bayesian Point Set Registration , 2018, 2017 MATRIX Annals.

[17]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[18]  M. Scheffler,et al.  Insightful classification of crystal structures using deep learning , 2017, Nature Communications.

[19]  H. Edelsbrunner,et al.  Topological data analysis , 2011 .

[20]  Katharine Turner,et al.  Hypothesis testing for topological data analysis , 2013, J. Appl. Comput. Topol..

[21]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[22]  Ba-Ngu Vo,et al.  Filters for Spatial Point Processes , 2009, SIAM J. Control. Optim..

[23]  Krishna Rajan,et al.  Atomic-Scale Tomography: A 2020 Vision , 2013, Microscopy and Microanalysis.

[24]  Steve Oudot,et al.  Persistence-Based Pooling for Shape Pose Recognition , 2016, CTIC.

[25]  J. E. Moyal The general theory of stochastic population processes , 1962 .

[26]  Kenji Fukumizu,et al.  Persistence weighted Gaussian kernel for topological data analysis , 2016, ICML.

[27]  H. C. Andersen,et al.  Molecular dynamics study of melting and freezing of small Lennard-Jones clusters , 1987 .

[28]  Ulrike Goldschmidt,et al.  An Introduction To The Theory Of Point Processes , 2016 .

[29]  J. Marron,et al.  Persistent Homology Analysis of Brain Artery Trees. , 2014, The annals of applied statistics.

[30]  Henry Adams,et al.  Persistence Images: A Stable Vector Representation of Persistent Homology , 2015, J. Mach. Learn. Res..

[31]  S. Mukherjee,et al.  Persistent Homology Transform for Modeling Shapes and Surfaces , 2013, 1310.1030.

[32]  Jesper Møller,et al.  The Accumulated Persistence Function, a New Useful Functional Summary Statistic for Topological Data Analysis, With a View to Brain Artery Trees and Spatial Point Process Applications , 2016, Journal of Computational and Graphical Statistics.

[33]  Vasileios Maroulas,et al.  Κ-means clustering on the space of persistence diagrams , 2017, Optical Engineering + Applications.

[34]  Vasileios Maroulas,et al.  Nonparametric Estimation of Probability Density Functions of Random Persistence Diagrams , 2018, J. Mach. Learn. Res..

[35]  Robert L. Paige,et al.  Challenges in Topological Object Data Analysis , 2018 .

[36]  M. R. Leadbetter Poisson Processes , 2011, International Encyclopedia of Statistical Science.

[37]  Massimo Ferri,et al.  Comparing Persistence Diagrams Through Complex Vectors , 2015, ICIAP.

[38]  Vasileios Maroulas,et al.  Nonlandmark classification in paleobiology: computational geometry as a tool for species discrimination , 2016, Paleobiology.

[39]  Vasileios Maroulas,et al.  Topological learning for acoustic signal identification , 2016, 2016 19th International Conference on Information Fusion (FUSION).

[40]  Baptiste Gault,et al.  Atom probe crystallography , 2012 .

[41]  Frédéric Chazal,et al.  An Introduction to Topological Data Analysis: Fundamental and Practical Aspects for Data Scientists , 2017, Frontiers in Artificial Intelligence.

[42]  Aaron B. Adcock,et al.  The Ring of Algebraic Functions on Persistence Bar Codes , 2013, 1304.0530.

[43]  Vasileios Maroulas,et al.  Tracking rapid intracellular movements: A Bayesian random set approach , 2015, 1509.04841.

[44]  James A. Chisholm,et al.  A new algorithm for performing three-dimensional searches of the Cambridge Structural Database , 2004 .

[45]  Rodrigo Fernandes de Mello,et al.  Persistent homology for time series and spatial data clustering , 2015, Expert Syst. Appl..

[46]  I. R. Goodman,et al.  Mathematics of Data Fusion , 1997 .

[47]  Peter Bubenik,et al.  The Persistence Landscape and Some of Its Properties , 2018, Topological Data Analysis.

[48]  Andrew J. Blumberg,et al.  Fast Estimation of Recombination Rates Using Topological Data Analysis , 2018, Genetics.

[49]  M. Gameiro,et al.  A topological measurement of protein compressibility , 2014, Japan Journal of Industrial and Applied Mathematics.

[50]  Robert L. Paige,et al.  Topological Data Analysis for Object Data , 2018, 1804.10255.

[51]  Pawel Dlotko,et al.  Distributed computation of coverage in sensor networks by homological methods , 2012, Applicable Algebra in Engineering, Communication and Computing.

[52]  Ioannis Sgouralis,et al.  A Bayesian Topological Framework for the Identification and Reconstruction of Subcellular Motion , 2017, SIAM J. Imaging Sci..

[53]  V. Maroulas,et al.  Interfacial Li-ion localization in hierarchical carbon anodes , 2017 .

[54]  Steve Oudot,et al.  Eurographics Symposium on Geometry Processing 2015 Stable Topological Signatures for Points on 3d Shapes , 2022 .

[55]  Ulrich Bauer,et al.  A stable multi-scale kernel for topological machine learning , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[56]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[57]  Baptiste Gault,et al.  Lattice Rectification in Atom Probe Tomography: Toward True Three-Dimensional Atomic Microscopy , 2011, Microscopy and Microanalysis.

[58]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[59]  P. Liaw,et al.  Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy , 2015, Nature Communications.

[60]  Krishna Rajan,et al.  The future of atom probe tomography , 2012 .

[61]  Vin de Silva,et al.  On the Local Behavior of Spaces of Natural Images , 2007, International Journal of Computer Vision.

[62]  G. Carlsson,et al.  Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival , 2011, Proceedings of the National Academy of Sciences.

[63]  Karthikeyan Natesan Ramamurthy,et al.  Persistent homology of attractors for action recognition , 2016, 2016 IEEE International Conference on Image Processing (ICIP).