A Method for Homoclinic and Heteroclinic Continuation in Two and Three Dimensions
暂无分享,去创建一个
Alejandro J. Rodríguez-Luis | Enrique Ponce | Emilio Freire | E. Freire | A. Rodríguez-Luis | E. Ponce
[1] Joseph Gruendler,et al. The Existence of Homoclinic Orbits and the Method of Melnikov for Systems in $R^n$ , 1985 .
[2] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[4] J. Craggs. Applied Mathematical Sciences , 1973 .
[5] Yu. A. Kuznetsov. Computation of Invariant Manifold Bifurcations , 1990 .
[6] Raymond Kapral,et al. Bifurcation phenomena near homoclinic systems: A two-parameter analysis , 1984 .
[7] C. Sparrow. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .
[8] S. Levin. Lectu re Notes in Biomathematics , 1983 .
[9] Werner C. Rheinboldt,et al. A locally parameterized continuation process , 1983, TOMS.
[10] Kenneth J. Palmer,et al. Exponential dichotomies and transversal homoclinic points , 1984 .
[11] A. Spence,et al. Continuation and Bifurcations: Numerical Techniques and Applications , 1990 .
[12] Colin Sparrow,et al. Local and global behavior near homoclinic orbits , 1984 .
[13] Leopoldo García Franquelo,et al. An Algorithm for Symbolic Computation of Center Manifolds , 1988, ISSAC.
[14] Stephen Wiggins,et al. Global Bifurcations and Chaos , 1988 .
[15] Colin Sparrow,et al. The Lorenz equations , 1982 .
[16] W. A. Coppel. Dichotomies in Stability Theory , 1978 .
[17] Paul C. Fife,et al. Mathematical Aspects of Reacting and Diffusing Systems , 1979 .
[18] Stephen Wiggins. Global Bifurcations and Chaos: Analytical Methods , 1988 .