Soft pneumatic gelatin actuator for edible robotics

We present a fully edible pneumatic actuator based on gelatin-glycerol material. The actuator is monolithic, fabricated via a molding process, and measures 90 mm in length, 20 mm in width, and 17 mm in thickness. Thanks to the material mechanical characteristics similar to those of silicone elastomers, the actuator exhibits a bending angle of 170.3 ° and a blocked force of 0.34 N at the applied pressure of 25 kPa. These values are comparable to elastomer based pneumatic actuators. As a validation example, two actuators are integrated to form a gripper capable of handling various objects, highlighting the high performance and applicability of the edible actuator. These edible actuators, combined with other recent edible materials and electronics, could lay the foundation for a new type of edible robots.

[1]  Paulo José do Amaral Sobral,et al.  Effects of plasticizer on physical properties of pigskin gelatin films , 2007 .

[2]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[3]  B. Budelmann,et al.  Autophagy in Octopus , 2010 .

[4]  Michael C. McAlpine,et al.  Silk‐Based Conformal, Adhesive, Edible Food Sensors , 2012, Advanced materials.

[5]  Young Jo Kim,et al.  Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices , 2013, Proceedings of the National Academy of Sciences.

[6]  Jim Euchner Design , 2014, Catalysis from A to Z.

[7]  Daniela Rus,et al.  Ingestible, controllable, and degradable origami robot for patching stomach wounds , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[8]  J. Deneubourg,et al.  Interactive robots in experimental biology. , 2011, Trends in ecology & evolution.

[9]  Atsuyoshi Nakayama,et al.  Chitosan and gelatin based edible films: state diagrams, mechanical and permeation properties , 1998 .

[10]  Young Jo Kim,et al.  Self-deployable current sources fabricated from edible materials. , 2013, Journal of materials chemistry. B.

[11]  Y. Chiang,et al.  Towards High Power High Energy Aqueous Sodium‐Ion Batteries: The NaTi2(PO4)3/Na0.44MnO2 System , 2013 .

[12]  Rebecca K. Kramer,et al.  Hyperelastic pressure sensing with a liquid-embedded elastomer , 2010 .

[13]  W. Marsden I and J , 2012 .

[14]  Ian D. Walker,et al.  Soft robotics: Biological inspiration, state of the art, and future research , 2008 .

[15]  Mihai Irimia-Vladu,et al.  Exotic materials for bio-organic electronics , 2011 .

[16]  George M. Whitesides,et al.  Towards a soft pneumatic glove for hand rehabilitation , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  O. Yeoh Some Forms of the Strain Energy Function for Rubber , 1993 .

[18]  Rossiter Jonathan,et al.  Here today, gone tomorrow: biodegradable soft robots , 2016, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[19]  D. L. Kaplan,et al.  Silk Fibroin as Edible Coating for Perishable Food Preservation , 2016, Scientific Reports.

[20]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[21]  P. R. Pinnock,et al.  The mechanical properties of solid polymers , 1966 .

[22]  S. Bauer,et al.  Biocompatible and Biodegradable Materials for Organic Field‐Effect Transistors , 2010 .

[23]  Matteo Cianchetti,et al.  Modelling the nonlinear response of fibre-reinforced bending fluidic actuators , 2016, ArXiv.

[24]  Jonathan Rossiter,et al.  Biodegradable and edible gelatine actuators for use as artificial muscles , 2014, Smart Structures.

[25]  M. C. Tracey,et al.  Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering , 2014 .

[26]  Robert J. Wood,et al.  Mechanically programmable bend radius for fiber-reinforced soft actuators , 2013, 2013 16th International Conference on Advanced Robotics (ICAR).

[27]  Shuichi Wakimoto,et al.  Micro pneumatic curling actuator - Nematode actuator - , 2009, 2008 IEEE International Conference on Robotics and Biomimetics.

[28]  Jay Whitacre,et al.  Microwave Synthesized NaTi2(PO4)3 as an Aqueous Sodium-Ion Negative Electrode , 2013 .

[29]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[30]  Gordon G. Wallace,et al.  3D Printed Edible Hydrogel Electrodes , 2016 .

[31]  Jamie Paik,et al.  Modeling, Design, and Development of Soft Pneumatic Actuators with Finite Element Method   , 2016 .

[32]  G. Whitesides,et al.  Pneumatic Networks for Soft Robotics that Actuate Rapidly , 2014 .