Logspline Deconvolution in Besov Space

ABSTRACT. In this paper we consider logspline density estimation for random variables which are contaminated with random noise. In the logspline density estimation for data without noise, the logarithm of an unknown density function is estimated by a polynomial spline, the unknown parameters of which are given by maximum likelihood. When noise is present, B‐splines and the Fourier inversion formula are used to construct the logspline density estimator of the unknown density function. Rates of convergence are established when the log‐density function is assumed to be in a Besov space. It is shown that convergence rates depend on the smoothness of the density function and the decay rate of the characteristic function of the noise. Simulated data are used to show the finite‐sample performance of inference based on the logspline density estimation.

[1]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[2]  Wavelet density estimation by approximation of log-densities , 1996 .

[3]  John Rice,et al.  Deconvolution of Microfluorometric Histograms with B Splines , 1982 .

[4]  R. DeVore,et al.  Interpolation of Besov-Spaces , 1988 .

[5]  J. D. Wilson,et al.  A smoothed EM approach to indirect estimation problems, with particular reference to stereology and emission tomography , 1990 .

[6]  Sam Efromovich,et al.  Density Estimation for the Case of Supersmooth Measurement Error , 1997 .

[7]  Y. Vardi,et al.  From image deblurring to optimal investments : maximum likelihood solutions for positive linear inverse problems , 1993 .

[8]  D. Donoho Nonlinear Solution of Linear Inverse Problems by Wavelet–Vaguelette Decomposition , 1995 .

[9]  Bernard W. Silverman,et al.  Speed of Estimation in Positron Emission Tomography and Related Inverse Problems , 1990 .

[10]  J. Koo Bivariate B-splines for tensor logspline density estimation , 1996 .

[11]  C. J. Stone,et al.  Logspline Density Estimation for Censored Data , 1992 .

[12]  Peter J. Diggle,et al.  A Fourier Approach to Nonparametric Deconvolution of a Density Estimate , 1993 .

[13]  Ja-Yong Koo,et al.  Logspline Density Estimation under Censoring and Truncation , 1999 .

[14]  C. J. Stone,et al.  A study of logspline density estimation , 1991 .

[15]  Ja-Yong Koo,et al.  Log-density estimation in linear inverse problems , 1998 .

[16]  R. Carroll,et al.  Deconvolving kernel density estimators , 1987 .

[17]  C. J. Stone Uniform Error Bounds Involving Logspline Models , 1989 .

[18]  Robert L. Taylor,et al.  A consistent nonparametric density estimator for the deconvolution problem , 1989 .

[19]  Ja-Yong Koo,et al.  B-spline deconvolution based on the EM algorithm , 1996 .

[20]  Cun-Hui Zhang Fourier Methods for Estimating Mixing Densities and Distributions , 1990 .

[21]  Jianqing Fan On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems , 1991 .

[22]  P. Hall,et al.  Optimal Rates of Convergence for Deconvolving a Density , 1988 .

[23]  F. O’Sullivan A Statistical Perspective on Ill-posed Inverse Problems , 1986 .

[24]  I. Johnstone,et al.  Density estimation by wavelet thresholding , 1996 .

[25]  Ja-Yong Koo,et al.  Optimal Rates of Convergence for Nonparametric Statistical Inverse Problems , 1993 .

[26]  A. Barron,et al.  APPROXIMATION OF DENSITY FUNCTIONS BY SEQUENCES OF EXPONENTIAL FAMILIES , 1991 .