Homogenization of Non-linear Scalar Conservation Laws

We study the limit as ε → 0 of the entropy solutions of the equation $${\partial_t u^\varepsilon + {\rm div}_x \left[A \left(\frac{x}{\varepsilon},u^\varepsilon \right)\right] =0}$$ . We prove that the sequence uε two-scale converges toward a function u(t, x, y), and u is the unique solution of a limit evolution problem. The remarkable point is that the limit problem is not a scalar conservation law, but rather a kinetic equation in which the macroscopic and microscopic variables are mixed. We also prove a strong convergence result in $${L_{\rm loc}^1}$$ .

[1]  D. Serre,et al.  Hyperbolicity, entropies, shock waves , 1999 .

[2]  G. Allaire Homogenization and two-scale convergence , 1992 .

[3]  I. N. Sneddon,et al.  Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves , 1999 .

[4]  T. Hou,et al.  Homogenization of linear transport equations with oscillatory vector fields , 1992 .

[5]  L. Evans,et al.  Effective Hamiltonians and Averaging for Hamiltonian Dynamics I , 2001 .

[6]  Anne-Laure Dalibard Kinetic Formulation for a Parabolic Conservation Law. Application to Homogenization , 2007, SIAM J. Math. Anal..

[7]  B. Perthame,et al.  Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies , 2005, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[8]  Diogo A. Gomes,et al.  Effective Hamiltonians and Averaging¶for Hamiltonian Dynamics II , 2002 .

[9]  Benoît Perthame,et al.  Kinetic formulation of conservation laws , 2002 .

[10]  Kinetic formulation for heterogeneous scalar conservation laws , 2006 .

[11]  B. Perthame,et al.  A kinetic equation with kinetic entropy functions for scalar conservation laws , 1991 .

[12]  G. Nguetseng A general convergence result for a functional related to the theory of homogenization , 1989 .

[13]  B. Perthame,et al.  A kinetic formulation of multidimensional scalar conservation laws and related equations , 1994 .

[14]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[15]  B. Engquist,et al.  Large time behavior and homogenization of solutions of two-dimensional conservation laws , 1993 .

[16]  ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO CONSERVATION LAWS WITH PERIODIC FORCING , 2006 .

[17]  Benoît Perthame,et al.  Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure , 1998 .

[18]  E Weinan,et al.  Correctors for the homogenization of conservation laws with oscillatory forcing terms , 1992 .

[19]  Anne-Laure Dalibard Initial layer for the Homogenization of a Conservation Law with Vanishing Viscosity , 2007 .

[20]  D. Serre,et al.  Geometric structures, oscillations, and initial-boundary value problems , 2000 .

[21]  A. Tzavaras,et al.  KINETIC DECOMPOSITION OF HOMOGENIZATION PROBLEMS , 2006 .

[22]  Homogenization of a quasilinear parabolic equation with vanishing viscosity , 2006 .

[23]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[24]  E Weinan,et al.  Homogenization of scalar conservation laws with oscillatory forcing terms , 1992 .

[25]  Formulation cinétique des lois de conservation scalaires mulditimensionnelles , 1991 .

[26]  Denis Serre,et al.  Chapter 7 L1-stability of nonlinear waves in scalar conservation laws , 2002 .

[27]  E. Weinan Homogenization of linear and nonlinear transport equations , 1992 .

[28]  D. Serre Systems of conservation laws , 1999 .