Assessing satellite-derived fire patches with functional diversity trait methods

[1]  Luigi Boschetti,et al.  Assessing the Shape Accuracy of Coarse Resolution Burned Area Identifications , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[2]  J. San-Miguel-Ayanz,et al.  A global wildfire dataset for the analysis of fire regimes and fire behaviour , 2019, Scientific Data.

[3]  D. Roy,et al.  Global validation of the collection 6 MODIS burned area product , 2019, Remote sensing of environment.

[4]  José M. C. Pereira,et al.  A patch-based algorithm for global and daily burned area mapping , 2019, Remote Sensing of Environment.

[5]  Emilio Chuvieco,et al.  A comparison of remotely-sensed and inventory datasets for burned area in Mediterranean Europe , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[6]  José M. C. Pereira,et al.  How well do global burned area products represent fire patterns in the Brazilian Savannas biome? An accuracy assessment of the MCD64 collections , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[7]  R. Whittaker,et al.  sars: an R package for fitting, evaluating and comparing species–area relationship models , 2019, Ecography.

[8]  M. Andreae Emission of trace gases and aerosols from biomass burning – an updated assessment , 2019, Atmospheric Chemistry and Physics.

[9]  Philip Lewis,et al.  Theoretical uncertainties for global satellite-derived burned area estimates , 2019, Biogeosciences.

[10]  E. Chuvieco,et al.  Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa , 2019, Remote Sensing of Environment.

[11]  A. Chao,et al.  An attribute‐diversity approach to functional diversity, functional beta diversity, and related (dis)similarity measures , 2019, Ecological Monographs.

[12]  P. Ciais,et al.  Varying relationships between fire radiative power and fire size at a global scale , 2019, Biogeosciences.

[13]  S. Plummer,et al.  Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies , 2018, Earth System Science Data.

[14]  J. Randerson,et al.  The Global Fire Atlas of individual fire size, duration, speed, and direction , 2018 .

[15]  Enrique Alonso García,et al.  Towards global data products of Essential Biodiversity Variables on species traits , 2018, Nature Ecology & Evolution.

[16]  J. Randerson,et al.  The Global Fire Atlas of individual fire size, duration, speed and direction , 2018, Earth System Science Data.

[17]  D. Roy,et al.  The Collection 6 MODIS burned area mapping algorithm and product , 2018, Remote sensing of environment.

[18]  P. Ciais,et al.  FRY, a global database of fire patch functional traits derived from space-borne burned area products , 2018, Scientific Data.

[19]  Colin J. Courtney Mustaphi,et al.  Continent‐level drivers of African pyrodiversity , 2018 .

[20]  Christopher O. Justice,et al.  Spatial and temporal intercomparison of four global burned area products , 2018, Int. J. Digit. Earth.

[21]  Thorsten Wiegand,et al.  Spatially Explicit Metrics of Species Diversity, Functional Diversity, and Phylogenetic Diversity: Insights into Plant Community Assembly Processes , 2017 .

[22]  R. Rothermel A Mathematical Model for Predicting Fire Spread in Wildland Fuels , 2017 .

[23]  B. Fu,et al.  Trait choice profoundly affected the ecological conclusions drawn from functional diversity measures , 2017, Scientific Reports.

[24]  Emilio Chuvieco,et al.  Can We Go Beyond Burned Area in the Assessment of Global Remote Sensing Products with Fire Patch Metrics? , 2016, Remote. Sens..

[25]  Luigi Boschetti,et al.  A stratified random sampling design in space and time for regional to global scale burned area product validation. , 2016, Remote sensing of environment.

[26]  Stephen Sitch,et al.  The Fire Modeling Intercomparison Project (FireMIP), phase 1: Experimental and analytical protocols with detailed model descriptions , 2016 .

[27]  José M. C. Pereira,et al.  Highlighting Biome-Specific Sensitivity of Fire Size Distributions to Time-Gap Parameter Using a New Algorithm for Fire Event Individuation , 2016, Remote. Sens..

[28]  Philippe Ciais,et al.  The status and challenge of global fire modelling , 2016 .

[29]  J. Pereira,et al.  A new global burned area product for climate assessment of fire impacts , 2016 .

[30]  Jan Lepš,et al.  Traits Without Borders: Integrating Functional Diversity Across Scales. , 2016, Trends in ecology & evolution.

[31]  C. Justice,et al.  The collection 6 MODIS active fire detection algorithm and fire products , 2016, Remote sensing of environment.

[32]  Sébastien Villéger,et al.  How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces , 2015 .

[33]  S. Stehman,et al.  Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation , 2015 .

[34]  Aaron M. Sparks,et al.  An accuracy assessment of the MTBS burned area product for shrub–steppe fires in the northern Great Basin, United States , 2015 .

[35]  P. Ciais,et al.  Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE – Part 1: simulating historical global burned area and fire regimes , 2014 .

[36]  J. Pereira,et al.  Causal relationships versus emergent patterns in the global controls of fire frequency , 2014 .

[37]  M. Parisien,et al.  The potential and realized spread of wildfires across Canada , 2014, Global change biology.

[38]  S. Stehman,et al.  Validation of the 2008 MODIS-MCD45 global burned area product using stratified random sampling , 2014 .

[39]  P. Ciais,et al.  Ten years of global burned area products from spaceborne remote sensing - A review: Analysis of user needs and recommendations for future developments , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[40]  K. Short Sources and implications of bias and uncertainty in a century of us wildfire activity data , 2013 .

[41]  K. Short,et al.  A spatial database of wildfires in the United States, 1992-2011 , 2013 .

[42]  G. Grenouillet,et al.  Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages , 2013 .

[43]  J. Randerson,et al.  Analysis of daily, monthly, and annual burned area using the fourth‐generation global fire emissions database (GFED4) , 2013 .

[44]  David Mouillot,et al.  A functional approach reveals community responses to disturbances. , 2013, Trends in ecology & evolution.

[45]  N. Pettorelli,et al.  Essential Biodiversity Variables , 2013, Science.

[46]  J. Randerson,et al.  Global burned area and biomass burning emissions from small fires , 2012 .

[47]  Wilfried Thuiller,et al.  From diversity indices to community assembly processes: a test with simulated data , 2012 .

[48]  Sara Taskinen,et al.  smatr 3– an R package for estimation and inference about allometric lines , 2012 .

[49]  J. Randerson,et al.  Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009) , 2010 .

[50]  C. Justice,et al.  The spatial and temporal distribution of crop residue burning in the contiguous United States. , 2009, The Science of the total environment.

[51]  David P. Roy,et al.  Identifying individual fires from satellite-derived burned area data , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[52]  D. Mouillot,et al.  New multidimensional functional diversity indices for a multifaceted framework in functional ecology. , 2008, Ecology.

[53]  Javier Gallego,et al.  A sampling method for the retrospective validation of global burned area products , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[54]  M. Westoby,et al.  Bivariate line‐fitting methods for allometry , 2006, Biological reviews of the Cambridge Philosophical Society.

[55]  M. Andreae,et al.  Emission of trace gases and aerosols from biomass burning , 2001 .

[56]  D. Turcotte,et al.  Forest fires: An example of self-organized critical behavior , 1998, Science.

[57]  Pierre Legendre,et al.  Evaluation of simple statistical criteria to qualify a simulation , 1996 .

[58]  K. A. Gomez,et al.  Statistical Procedures for Agricultural Research. , 1984 .

[59]  Kenneth A. Couch,et al.  A Comparison , 1913, Texas medical journal.

[60]  J. Abatzoglou,et al.  Detection rates and biases of fire observations from MODIS and agency reports in the conterminous United States , 2019, Remote Sensing of Environment.

[61]  E. Chuvieco,et al.  Global fire size distribution is driven by human impact and climate , 2015 .

[62]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[63]  Emilio Chuvieco,et al.  Wildfire Frequency-Area Statistics in Spain , 2011 .

[64]  P. Legendre,et al.  A distance-based framework for measuring functional diversity from multiple traits. , 2010, Ecology.

[65]  E. Neafsey,et al.  Fire in the Earth System , 2009 .

[66]  I. R. Noble,et al.  What are functional types and how should we seek them , 1997 .