Lanthanide complexes on Ag nanoparticles: designing contrast agents for magnetic resonance imaging.

This paper describes colloidal particles that are designed to induce hyper-intensity contrast (T(1) relaxation) in MRI. The contrast agents consist of discrete gadolinium complexes tethered to 10 nm diameter silver nanoparticles. The gadolinium complexes (1) [Gd(DTPA-bisamido cysteine)](2-) and (2) [Gd(cystine-NTA)(2)](3-), undergo chemisorption to particle surfaces through thiol or disulfide groups, respectively, to form two new contrast agents. The resulting nanoparticulate constructs are characterized on the basis of their syntheses, composition, spectra and contrast enhancing power. The average r(1) relaxivities of the of the surface bound complexes (obtained at 9.4 T and 25 degrees C) are 10.7 and 9.7 s(-1) mM(-1), respectively, as compared to 4.7 s(-1) mM(-1) for the clinical agent Magnevist. Correspondingly, the respective whole particle relaxivities are 27927 and 13153 s(-1) mM(-1).

[1]  Yongmin Chang,et al.  Gold nanoparticles functionalised by Gd-complex of DTPA-bis(amide) conjugate of glutathione as an MRI contrast agent. , 2008, Bioorganic & medicinal chemistry letters.

[2]  Joop A. Peters Multinuclear NMR study of lanthanide(III) complexes of diethylenetriaminepentaacetate , 1988 .

[3]  Wilhelm R. Glomm,et al.  Functionalized Gold Nanoparticles for Applications in Bionanotechnology , 2005 .

[4]  Maili Liu,et al.  Synthesis and evaluation of novel polysaccharide-Gd-DTPA compounds as contrast agent for MRI , 2003 .

[5]  Christopher J. Kiely,et al.  Some recent advances in nanostructure preparation from gold and silver particles: a short topical review , 2002 .

[6]  Yan Fang,et al.  Experimental (SERS) and theoretical (DFT) studies on the adsorption behaviors of L-cysteine on gold/silver nanoparticles , 2007 .

[7]  S. Laurent,et al.  Synthesis of a Sialyl LewisX Mimetic Conjugated with DTPA, Potential Ligand of New Contrast Agents for Medical Imaging , 2002 .

[8]  Tamitake Itoh,et al.  Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications , 2008, Analytical and bioanalytical chemistry.

[9]  Sophie Laurent,et al.  Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents. , 2006, Contrast media & molecular imaging.

[10]  R. Murray,et al.  Arylthiolate-protected silver quantum dots. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[11]  K. Raymond,et al.  Gadolinium complexation by a new diethylenetriaminepentaacetic acid-amide ligand. Amide oxygen coordination , 1990 .

[12]  John C. Bischof,et al.  Enhancement of tumor thermal therapy using gold nanoparticle–assisted tumor necrosis factor-α delivery , 2006, Molecular Cancer Therapeutics.

[13]  Charles S. Johnson,et al.  NMR Diffusion, Relaxation, and Spectroscopic Studies of Water Soluble, Monolayer-Protected Gold Nanoclusters† , 2001 .

[14]  A. Ulman,et al.  Formation and Structure of Self-Assembled Monolayers. , 1996, Chemical reviews.

[15]  Joop A. Peters,et al.  Multinuclear magnetic resonance study of the structure and dynamics of lanthanide(III) complexes of the bis(propylamide) of diethylenetriaminepentaacetic acid in aqueous solution , 1993 .

[16]  Hong Liang,et al.  Hydrothermal syntheses, and crystal structures of new lanthanide coordination polymers with nitrilotriacetic acid , 2006 .

[17]  R. Murray,et al.  Three-Dimensional Monolayers: Voltammetry of Alkanethiolate-Stabilized Gold Cluster Molecules , 1998 .

[18]  Joop A. Peters,et al.  Structures and Dynamics of Lanthanide(III) Complexes of Sugar-Based DTPA-bis(amides) in Aqueous Solution: A Multinuclear NMR Study , 1997 .

[19]  G. W. Robinson,et al.  Thermal Offset Viscosities of Liquid H2O, D2O, and T2O , 1999 .

[20]  M. Sastry,et al.  Studies on the Reversible Aggregation of Cysteine-Capped Colloidal Silver Particles Interconnected via Hydrogen Bonds , 2001 .

[21]  Hanwen Tai,et al.  Surface-enhanced Raman scattering of Ag(CN)2− in silver sol. Effect of pyridine , 1984 .

[22]  V. Jacques,et al.  New Classes of MRI Contrast Agents , 2002 .

[23]  R. Lauffer,et al.  Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design , 1987 .

[24]  L. Niu,et al.  Mercaptoethane sulfonate protected, water-soluble gold and silver nanoparticles: Syntheses, characterization and their building multilayer films with polyaniline via ion-dipole interactions. , 2006, Journal of colloid and interface science.

[25]  M. Sastry,et al.  pH Dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles , 1997 .

[26]  T. Okano,et al.  A polymeric micelle MRI contrast agent with changeable relaxivity. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[27]  A. Sherry,et al.  Stability constants for Gd3+ binding to model DTPA‐conjugates and DTPA‐proteins: Implications for their use as magnetic resonance contrast agents , 1988, Magnetic resonance in medicine.

[28]  A Dean Sherry,et al.  Paramagnetic lanthanide complexes as PARACEST agents for medical imaging. , 2006, Chemical Society reviews.

[29]  Y. Kang,et al.  Synthesis and characterization of Ag and Ag–SiO2 nanoparticles , 2005 .

[30]  Olivier Beuf,et al.  Design of Gold Nanoparticles for Magnetic Resonance Imaging , 2006 .

[31]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[32]  James E. Hutchison,et al.  Monolayers in Three Dimensions: NMR, SAXS, Thermal, and Electron Hopping Studies of Alkanethiol Stabilized Gold Clusters , 1995 .

[33]  D. Parker,et al.  Contrast‐enhanced MRI with new biodegradable macromolecular Gd(III) complexes in tumor‐bearing mice , 2005, Magnetic resonance in medicine.

[34]  R. Murray,et al.  Colloids and self-assembled monolayers , 1997 .

[35]  L. Michaelis,et al.  THE REACTION OF IODOACETIC ACID ON MERCAPTANS AND AMINES , 1934 .

[36]  X. Zhu,et al.  The surface chelate effect. , 2003, Journal of the American Chemical Society.

[37]  M. Kastner,et al.  Hexaamminecobalt(III) aquabis(nitrilotriacetato-kappa4N,O,O',O")gadolinate(III) octahydrate. , 2002, Acta crystallographica. Section C, Crystal structure communications.

[38]  S. Ghosh,et al.  Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties, and application in surface-enhanced Raman scattering. , 2006, The journal of physical chemistry. B.

[39]  Arthur E. Martell,et al.  Critical Stability Constants , 2011 .

[40]  Joop A. Peters,et al.  Multinuclear NMR study of the interactions between the La(III) complex of DTPA-bis(glucamide) and Zn(II) or borate , 1998 .

[41]  Paul Mulvaney,et al.  Surface Plasmon Spectroscopy of Nanosized Metal Particles , 1996 .

[42]  Marc D. Porter,et al.  Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as a Function of Core Size , 1998 .

[43]  Francis Vocanson,et al.  Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. , 2008, Journal of the American Chemical Society.

[44]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[45]  D. Parker,et al.  PEG-g-poly(GdDTPA-co-L-cystine): a biodegradable macromolecular blood pool contrast agent for MR imaging. , 2004, Bioconjugate chemistry.

[46]  K. Rose,et al.  The zeta potential of surface‐functionalized metallic nanorod particles in aqueous solution , 2007, Electrophoresis.

[47]  S. Russek,et al.  The utility of the single-molecule magnet Fe8 as a magnetic resonance imaging contrast agent over a broad range of concentration , 2007 .

[48]  B. S. Day,et al.  Packing density and structure effects on energy-transfer dynamics in argon collisions with organic monolayers. , 2005, The Journal of chemical physics.

[49]  Michael R. Caplan,et al.  Targeting Drugs to Combinations of Receptors: A Modeling Analysis of Potential Specificity , 2005, Annals of Biomedical Engineering.

[50]  R. Weissleder,et al.  Cell-specific targeting of nanoparticles by multivalent attachment of small molecules , 2005, Nature Biotechnology.

[51]  M. Bawendi,et al.  Renal clearance of quantum dots , 2007, Nature Biotechnology.

[52]  E. Purcell,et al.  Relaxation Effects in Nuclear Magnetic Resonance Absorption , 1948 .

[53]  S. Lee NMR study of intramolecular chemical exchange in the La(III) complex of triethylenetetraaminehexaacetic acid in aqueous solution , 2000 .

[54]  K. Aoki,et al.  Thermal Metallization of Silver Stearate-Coated Nanoparticles Owing to the Destruction of the Shell Structure , 2004 .

[55]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[56]  G. Scoles,et al.  Physisorption and Chemisorption of Alkanethiols and Alkyl Sulfides on Au(111) , 1998 .

[57]  M. Botta,et al.  NMR, Relaxometric, and Structural Studies of the Hydration and Exchange Dynamics of Cationic Lanthanide Complexes of Macrocyclic Tetraamide Ligands , 1999 .

[58]  G. D’Errico,et al.  Peptides and Gd complexes containing colloidal assemblies as tumor-specific contrast agents in MRI: physicochemical characterization. , 2007, Biophysical journal.

[59]  Lawrence Tamarkin,et al.  Colloidal Gold: A Novel Nanoparticle Vector for Tumor Directed Drug Delivery , 2004, Drug delivery.

[60]  R. Murray,et al.  Arenethiolate Monolayer-Protected Gold Clusters , 1999 .

[61]  Guozhen Wu,et al.  The electro-oxidative activity of cysteine on the Au electrode as evidenced by surface enhanced Raman scattering. , 2006, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[62]  Yadong Li,et al.  Synthesis, structures and properties of series lanthanide nitrilotriacetates , 2004 .