Fast and multiplexed superresolution imaging with DNA-PAINT-ERS

[1]  S. Esener,et al.  Sample preparation and imaging procedures for fast and multiplexed superresolution microscopy with DNA-PAINT-ERS , 2020 .

[2]  Maximilian T. Strauss,et al.  An order of magnitude faster DNA-PAINT imaging by optimized sequence design and buffer conditions , 2019, Nature Methods.

[3]  Suliana Manley,et al.  Waveguide-PAINT offers an open platform for large field-of-view super-resolution imaging , 2019, Nature Communications.

[4]  P. Schwille,et al.  Flat-top TIRF illumination boosts DNA-PAINT imaging and quantification , 2019, Nature Communications.

[5]  S. Hohng,et al.  Accelerated FRET-PAINT microscopy , 2018, Molecular Brain.

[6]  S. Hohng,et al.  Accelerated super-resolution imaging with FRET-PAINT , 2017, Molecular Brain.

[7]  Maximilian T. Strauss,et al.  Fast, Background-Free DNA-PAINT Imaging Using FRET-Based Probes. , 2017, Nano letters.

[8]  Peng Yin,et al.  DNA-barcoded labeling probes for highly multiplexed Exchange-PAINT imaging† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc05420j Click here for additional data file. , 2017, Chemical science.

[9]  Johannes B. Woehrstein,et al.  Quantitative Super-Resolution Imaging with qPAINT using Transient Binding Analysis , 2016, Nature Methods.

[10]  Tao Huang,et al.  Photoactivated Localization Microscopy with Bimolecular Fluorescence Complementation (BiFC-PALM). , 2015, Journal of visualized experiments : JoVE.

[11]  Henry Pinkard,et al.  Advanced methods of microscope control using μManager software. , 2014, Journal of biological methods.

[12]  Lewis D. Griffin,et al.  Flat clathrin lattices: stable features of the plasma membrane , 2014, Molecular biology of the cell.

[13]  Johannes B. Woehrstein,et al.  Multiplexed 3D Cellular Super-Resolution Imaging with DNA-PAINT and Exchange-PAINT , 2014, Nature Methods.

[14]  S. H. Matthiesen,et al.  Fast and Non-Toxic In Situ Hybridization without Blocking of Repetitive Sequences , 2012, PloS one.

[15]  Mark Bates,et al.  Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging , 2011, Nature Methods.

[16]  S. Krylov,et al.  Aptamer-facilitated Protein Isolation from Cells , 2011 .

[17]  Mike Heilemann,et al.  The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging. , 2010, Journal of biotechnology.

[18]  George C Schatz,et al.  Tailoring DNA structure to increase target hybridization kinetics on surfaces. , 2010, Journal of the American Chemical Society.

[19]  Mark Bates,et al.  Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent Probes , 2007, Science.

[20]  R. Hochstrasser,et al.  Wide-field subdiffraction imaging by accumulated binding of diffusing probes , 2006, Proceedings of the National Academy of Sciences.

[21]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[22]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[23]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[24]  M Marsh,et al.  The structural era of endocytosis. , 1999, Science.