Hearing in a “Moving” Visual World: Coordinate Transformations Along the Auditory Pathway

This chapter reviews the literature on how auditory signals are transformed into a coordinate system that facilitates interactions with the visual system. Sound location is deduced from cues that depend on the position of the sound with respect to the head, but visual location is deduced from the pattern of light illuminating the retina, yielding an eye-centered code. Connecting sights and sounds originating from the same position in the physical world requires the brain to incorporate information about the position of the eyes with respect to the head. Eye position has been found to interact with auditory signals at all levels of the auditory pathway that have been tested but usually yields a code that is in a hybrid reference frame: neither head nor eye centered. Computing a coordinate transformation, in principle, may be easy, which could suggest that the looseness of the computational constraints may permit hybrid coding. A review of the behavioral literature addressing the effects of eye gaze on auditory spatial perception and a discussion of its consistency with physiological observations concludes the chapter.

[1]  D. Sparks,et al.  Saccades to somatosensory targets. I. behavioral characteristics. , 1996, Journal of neurophysiology.

[2]  D. Hubel,et al.  Responses to visual stimulation and relationship between visual, auditory, and somatosensory inputs in mouse superior colliculus. , 1975, Journal of neurophysiology.

[3]  Xiaogang Yan,et al.  Visual–Motor Transformations Within Frontal Eye Fields During Head-Unrestrained Gaze Shifts in the Monkey , 2014, Cerebral cortex.

[4]  D. Sparks,et al.  The deep layers of the superior colliculus. , 1989, Reviews of oculomotor research.

[5]  Marc A Sommer,et al.  Beyond the labeled line: variation in visual reference frames from intraparietal cortex to frontal eye fields and the superior colliculus. , 2018, Journal of neurophysiology.

[6]  Willard R. Thurlow,et al.  The effects of eye position and expectation on sound localization , 1971 .

[7]  J. Lewald,et al.  Horizontal and vertical effects of eye-position on sound localization , 2006, Hearing Research.

[8]  W. Ehrenstein,et al.  The effect of eye position on auditory lateralization , 1996, Experimental Brain Research.

[9]  Zahn,et al.  The audioocular response: intersensory delay. , 1979, Sensory processes.

[10]  R. Bohlander,et al.  Eye Position and Visual Attention Influence Perceived Auditory Direction , 1984, Perceptual and motor skills.

[11]  J. Groh,et al.  Visual- and saccade-related signals in the primate inferior colliculus , 2007, Proceedings of the National Academy of Sciences.

[12]  Katherine C. Wood,et al.  Relative sound localisation abilities in human listeners. , 2015, The Journal of the Acoustical Society of America.

[13]  J. C. Middlebrooks,et al.  Codes for sound-source location in nontonotopic auditory cortex. , 1998, Journal of neurophysiology.

[14]  A. Fuchs,et al.  Eye movements evoked by stimulation of frontal eye fields. , 1969, Journal of neurophysiology.

[15]  Daniel J Tollin,et al.  Effect of eye position on saccades and neuronal responses to acoustic stimuli in the superior colliculus of the behaving cat. , 2004, Journal of neurophysiology.

[16]  David L. Sparks,et al.  Response properties of eye movement-related neurons in the monkey superior colliculus , 1975, Brain Research.

[17]  J. Groh,et al.  Different Stimuli, Different Spatial Codes: A Visual Map and an Auditory Rate Code for Oculomotor Space in the Primate Superior Colliculus , 2014, PloS one.

[18]  A. Fuchs,et al.  Firing patterns of abducens neurons of alert monkeys in relationship to horizontal eye movement. , 1970, Journal of neurophysiology.

[19]  D. Sparks Functional properties of neurons in the monkey superior colliculus: Coupling of neuronal activity and saccade onset , 1978, Brain Research.

[20]  D L Sparks,et al.  Sensorimotor integration in the primate superior colliculus. II. Coordinates of auditory signals. , 1987, Journal of neurophysiology.

[21]  J. Groh,et al.  Representation of eye position in primate inferior colliculus. , 2006, Journal of neurophysiology.

[22]  Gerald Kidd,et al.  Tuning in the spatial dimension: evidence from a masked speech identification task. , 2008, The Journal of the Acoustical Society of America.

[23]  Jennifer M. Groh,et al.  Two models for transforming auditory signals from head-centered to eye-centered coordinates , 1993, Biological Cybernetics.

[24]  William E O'Neill,et al.  Auditory Spatial Perception Dynamically Realigns with Changing Eye Position , 2007, The Journal of Neuroscience.

[25]  A. Forge Psychophysical and physiological advances in hearing , 1998 .

[26]  R. Andersen,et al.  Intentional maps in posterior parietal cortex. , 2002, Annual review of neuroscience.

[27]  G. S. Russo,et al.  Frontal eye field activity preceding aurally guided saccades. , 1994, Journal of neurophysiology.

[28]  A. Mills On the minimum audible angle , 1958 .

[30]  Yale E Cohen,et al.  Motor-related signals in the intraparietal cortex encode locations in a hybrid, rather than eye-centered reference frame. , 2009, Cerebral cortex.

[31]  D. Sparks,et al.  Sensorimotor integration in the primate superior colliculus. I. Motor convergence. , 1987, Journal of neurophysiology.

[32]  Ankoor S. Shah,et al.  Timing and laminar profile of eye-position effects on auditory responses in primate auditory cortex. , 2004, Journal of neurophysiology.

[33]  Adrian K. C. Lee,et al.  Directing Eye Gaze Enhances Auditory Spatial Cue Discrimination , 2014, Current Biology.

[34]  D. M. Green,et al.  A panoramic code for sound location by cortical neurons. , 1994, Science.

[35]  E R Hafter,et al.  Difference thresholds for interaural delay. , 1975, The Journal of the Acoustical Society of America.

[36]  B. Stein,et al.  Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. , 1986, Journal of neurophysiology.

[37]  R. Andersen,et al.  The influence of the angle of gaze upon the excitability of the light- sensitive neurons of the posterior parietal cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  J. Groh,et al.  Eye Position Affects Activity in Primary Auditory Cortex of Primates , 2003, Current Biology.

[39]  John C. Middlebrooks,et al.  Stream segregation with high spatial acuity. , 2012, The Journal of the Acoustical Society of America.

[40]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[41]  R. Wurtz,et al.  Visual receptive fields of frontal eye field neurons. , 1973, Brain research.

[42]  William E O'Neill,et al.  Perception of auditory, visual, and egocentric spatial alignment adapts differently to changes in eye position. , 2010, Journal of neurophysiology.

[43]  Yale E Cohen,et al.  Auditory saccades from different eye positions in the monkey: implications for coordinate transformations. , 2004, Journal of neurophysiology.

[44]  D. Sparks,et al.  Dissociation of visual and saccade-related responses in superior colliculus neurons. , 1980, Journal of neurophysiology.

[45]  Jennifer M Groh,et al.  Auditory signals evolve from hybrid- to eye-centered coordinates in the primate superior colliculus. , 2012, Journal of neurophysiology.

[46]  Virginia Best,et al.  Visually-guided Attention Enhances Target Identification in a Complex Auditory Scene , 2007, Journal for the Association for Research in Otolaryngology.

[47]  B. Grothe,et al.  The natural history of sound localization in mammals – a story of neuronal inhibition , 2014, Front. Neural Circuits..

[48]  Stephan Getzmann,et al.  The effect of eye position and background noise on vertical sound localization , 2002, Hearing Research.

[49]  Jennifer M Groh,et al.  A Rate Code for Sound Azimuth in Monkey Auditory Cortex: Implications for Human Neuroimaging Studies , 2008, The Journal of Neuroscience.

[50]  R. Wurtz,et al.  Activity of superior colliculus in behaving monkey. 3. Cells discharging before eye movements. , 1972, Journal of neurophysiology.

[51]  A. Fuchs,et al.  Activity of brain stem neurons during eye movements of alert monkeys. , 1972, Journal of neurophysiology.

[52]  A. Pouget,et al.  Efficient computation and cue integration with noisy population codes , 2001, Nature Neuroscience.

[53]  Joost X Maier,et al.  Comparison of Gain-Like Properties of Eye Position Signals in Inferior Colliculus Versus Auditory Cortex of Primates , 2010, Front. Integr. Neurosci..

[54]  R. Andersen,et al.  Eye-centered, head-centered, and intermediate coding of remembered sound locations in area LIP. , 1996, Journal of neurophysiology.

[55]  James B. Aimone,et al.  N2A: a computational tool for modeling from neurons to algorithms , 2014, Front. Neural Circuits.

[56]  J. L. Conway,et al.  Deficits in eye movements following frontal eye-field and superior colliculus ablations. , 1980, Journal of neurophysiology.

[57]  C. Prablanc,et al.  Saccadic responses evoked by presentation of visual and auditory targets , 2004, Experimental Brain Research.

[58]  J. Wann,et al.  Does limb proprioception drift? , 2004, Experimental Brain Research.

[59]  Jörg Lewald,et al.  The effect of gaze eccentricity on perceived sound direction and its relation to visual localization , 1998, Hearing Research.

[60]  H. McGurk,et al.  Hearing lips and seeing voices , 1976, Nature.

[61]  David McAlpine,et al.  Sound localization and delay lines – do mammals fit the model? , 2003, Trends in Neurosciences.

[62]  G. Recanzone,et al.  Effects of stimulus azimuth and intensity on the single-neuron activity in the auditory cortex of the alert macaque monkey. , 2006, Journal of neurophysiology.

[63]  D. Sparks,et al.  Corollary discharge provides accurate eye position information to the oculomotor system. , 1983, Science.

[64]  Gary D. Paige,et al.  Advancing age alters the influence of eye position on sound localization , 2010, Experimental Brain Research.

[65]  Jennifer M. Groh,et al.  A Monotonic Code for Sound Azimuth in Primate Inferior Colliculus , 2003, Journal of Cognitive Neuroscience.

[66]  D. Robinson Eye movements evoked by collicular stimulation in the alert monkey. , 1972, Vision research.

[67]  L. Chalupa,et al.  Responses of visual, somatosensory, and auditory neurones in the golden hamster's superior colliculus , 1977, The Journal of physiology.

[68]  J. L. Conway,et al.  Effects of frontal eye field and superior colliculus ablations on eye movements. , 1979, Science.

[69]  David L. Sparks,et al.  Auditory receptive fields in primate superior colliculus shift with changes in eye position , 1984, Nature.

[70]  T. Sejnowski,et al.  Spatial Transformations in the Parietal Cortex Using Basis Functions , 1997, Journal of Cognitive Neuroscience.

[71]  Joost X. Maier,et al.  Multisensory guidance of orienting behavior , 2009, Hearing Research.

[72]  S. Inati,et al.  Eye Position Influences Auditory Responses in Primate Inferior Colliculus , 2001, Neuron.

[73]  R. Andersen,et al.  Responses to auditory stimuli in macaque lateral intraparietal area. II. Behavioral modulation. , 1999, Journal of neurophysiology.

[74]  Y. Cohen,et al.  Eye-centered, head-centered, and complex coding of visual and auditory targets in the intraparietal sulcus. , 2005, Journal of neurophysiology.

[75]  B. Stein,et al.  Spatial factors determine the activity of multisensory neurons in cat superior colliculus , 1986, Brain Research.

[76]  R. Wurtz,et al.  Brain circuits for the internal monitoring of movements. , 2008, Annual review of neuroscience.

[77]  H. Versnel,et al.  Involvement of Monkey Inferior Colliculus in Spatial Hearing , 2004, The Journal of Neuroscience.

[78]  Jörg Lewald,et al.  Eye-position effects in directional hearing , 1997, Behavioural Brain Research.