Oxidation, MOS Capacitors, and MOSFETs

One of the most important advantages of SiC as a wide-energy-gap material is the high quality of the interface with its native oxide (SiO2). It is this feature that is critical for the development of the most used semiconductor device — the metal—oxide—semiconductor field-effect transistor (MOSFET). This chapter presents the current understanding of the interface and near-interface defects in thermally oxidized SiC. Particular emphasis is placed on the characterization techniques, given that nonequilibrium conditions, which appear owing to wide energy gap of SiC, lead to qualitatively different results from the case where these widely used techniques are applied to Si structures. A special section is devoted to nitridation of SiC—SiO2 interfaces as the most promising technique for achieving the device-quality interfaces required for commercial applications. Finally, the performance of some of the power MOSFETs fabricated on SiC is presented.

[1]  H. B. Harrison,et al.  Novel SiC accumulation-mode power MOSFET , 2001 .

[2]  Kenji Fukuda,et al.  Correlation between Inversion Channel Mobility and Interface Traps near the Conduction Band in SiC MOSFETs , 2002 .

[3]  Valeri Afanas'ev,et al.  SiC/SiO2 interface defects , 2000 .

[4]  B. J. Baliga,et al.  Semiconductors for high‐voltage, vertical channel field‐effect transistors , 1982 .

[5]  M. Melloch,et al.  N-channel 3C-SiC MOSFETs on silicon substrate , 2002, IEEE Electron Device Letters.

[6]  Michael R. Melloch,et al.  High-Voltage (2.6 kV) Lateral DMOSFETs in 4H-SiC , 1997 .

[7]  A. Agarwal,et al.  1.1 kV 4H-SiC power UMOSFETs , 1997, IEEE Electron Device Letters.

[8]  David L. Griscom,et al.  Defects in SiO[2] and related dielectrics : science and technology , 2000 .

[9]  P. T. Lai,et al.  Interface properties of N2O-annealed SiC metal oxide semiconductor devices , 2001 .

[10]  P.T. Lai,et al.  Improved performance and reliability of N2O-grown oxynitride on 6H-SiC , 2000, IEEE Electron Device Letters.

[11]  Michael R. Melloch,et al.  Effect of substrate orientation and crystal anisotropy on the thermally oxidized SiO2/SiC interface , 1996 .

[12]  H. B. Harrison,et al.  Nitrogen in Ultra Thin Dielectrics , 1998 .

[13]  H. B. Harrison,et al.  High quality ultrathin dielectric films grown on silicon in a nitric oxide ambient , 1994 .

[14]  M. Melloch,et al.  High-voltage accumulation-layer UMOSFETs in 4H-SiC , 1998, 56th Annual Device Research Conference Digest (Cat. No.98TH8373).

[15]  Leonard C. Feldman,et al.  Interface state density and channel mobility for 4H-SiC MOSFETs with nitrogen passivation , 2001 .

[16]  M. Melloch,et al.  Thin-oxide silicon-gate self-aligned 6H-SiC MOSFETs fabricated with a low-temperature source/drain implant activation anneal , 1997, IEEE Electron Device Letters.

[17]  D. J. Larkin An Overview of SiC Epitaxial Growth , 1997 .

[18]  Bo Monemar,et al.  Carbon-vacancy related defects in 4H- and 6H-SiC , 1999 .

[19]  Bantval J. Baliga,et al.  Inversion Layer Mobility in SiC MOSFETs , 1997 .

[20]  Peter Friedrichs,et al.  Detailed investigation of n-channel enhancement 6H-SiC MOSFETs , 1999 .

[21]  H. B. Harrison,et al.  Slow-trap profiling of NO and N2O nitrided oxides grown on Si and SiC substrates , 1999 .

[22]  J. J. A. Cooper,et al.  Advances in SiC MOS Technology , 1997 .

[23]  Tsunenobu Kimoto,et al.  Breakdown Fields along Various Crystal Orientations in 4H-, 6H- and 3C-SiC , 2002 .

[24]  M. Melloch,et al.  Fundamentals of SiC-Based Device Processing , 1997 .

[25]  K. Ueno,et al.  4H-SiC MOSFETs utilizing the H2 surface cleaning technique , 1998, IEEE Electron Device Letters.

[26]  L. Feldman,et al.  Effect of nitric oxide annealing on the interface trap densities near the band edges in the 4H polytype of silicon carbide , 2000 .

[27]  M. Bassler,et al.  Electrical properties of silicon carbide polytypes , 1996 .

[28]  M. Melloch,et al.  High-voltage accumulation-layer UMOSFET's in 4H-SiC , 1998, IEEE Electron Device Letters.

[29]  J. W. Palmour,et al.  Insulator investigation on SiC for improved reliability , 1999 .

[30]  S. Dimitrijev,et al.  Effects of nitridation in gate oxides grown on 4H-SiC , 2001 .

[31]  E. H. Nicollian,et al.  The si-sio, interface – electrical properties as determined by the metal-insulator-silicon conductance technique , 1967 .

[32]  H. Matsunami,et al.  Effects of wet oxidation/anneal on interface properties of thermally oxidized SiO/sub 2//SiC MOS system and MOSFET's , 1999 .

[33]  J. Halbritter,et al.  ARXPS studies of SiO_2-SiC interfaces and oxidation of 6H SiC single crystal Si-(001) and C-(001) surfaces , 1994 .

[34]  Jayarama Narayan Shenoy Basic MOS studies for silicon carbide power devices , 1996 .

[35]  M. Melloch,et al.  High-voltage double-implanted power MOSFET's in 6H-SiC , 1997, IEEE Electron Device Letters.

[36]  H. B. Harrison,et al.  Investigation of nitric oxide and Ar annealed SiO2/SiC interfaces by x-ray photoelectron spectroscopy , 1999 .

[37]  F. Fang,et al.  Transport Properties of Electrons in Inverted Silicon Surfaces , 1968 .

[38]  Jonathan A. Cooper,et al.  2.6 kV 4H-SiC lateral DMOSFETs , 1998, IEEE Electron Device Letters.

[39]  V. Afanas’ev,et al.  Intrinsic SiC/SiO2 Interface States , 1997 .

[40]  Yu Zeng,et al.  Characterization of interface traps in the subthreshold region of implanted 4H and 6H-SiC MOSFETs , 2002 .

[41]  John D. Cressler,et al.  Direct current characterization of depletion-mode 6HSiC MOSFETs from 294 to 723 K , 1996 .

[42]  Y. Sugawara,et al.  1.4 kV 4H-SiC UMOSFET with low specific on-resistance , 1998, Proceedings of the 10th International Symposium on Power Semiconductor Devices and ICs. ISPSD'98 (IEEE Cat. No.98CH36212).

[43]  A. Agarwal,et al.  Temperature dependence of Fowler-Nordheim current in 6H- and 4H-SiC MOS capacitors , 1997, IEEE Electron Device Letters.

[44]  P. T. Lai,et al.  Interface properties of NO-annealed N/sub 2/O-grown oxynitride , 1999 .

[45]  Sima Dimitrijev,et al.  Indications for Nitrogen-Assisted Removal of Carbon from SiO2-SiC Interface , 2001 .

[46]  Kuan Yew Cheong,et al.  Effects of Initial Nitridation on the Characteristics of SiC-SiO2 Interfaces , 2003 .

[47]  Sima Dimitrijev,et al.  Passivation of the Oxide/4H-SiC Interface , 2002 .

[48]  K. Shibahara,et al.  Fabrication of inversion-type n-channel MOSFET's using cubic-SiC on Si , 1986, IEEE Electron Device Letters.

[49]  S. Dimitrijev,et al.  MOS capacitor on 4H-SiC as a nonvolatile memory element , 2002, IEEE Electron Device Letters.

[50]  Eric Garfunkel,et al.  Fundamental aspects of ultrathin dielectrics on si-based devices , 1998 .

[51]  John W. Palmour,et al.  High temperature enhancement-mode NMOS and PMOS devices and circuits in 6H-SiC , 1995, 1995 53rd Annual Device Research Conference Digest.

[52]  Peter Friedrichs,et al.  An 1800 V triple implanted vertical 6H-SiC MOSFET , 1999 .

[53]  Andre Stesmans,et al.  Shallow electron traps at the 4H–SiC/SiO2 interface , 2000 .

[54]  C. R. Helms,et al.  The silicon-silicon dioxide system: Its microstructure and imperfections , 1994 .

[55]  Y. Hayashi,et al.  Experimental 3C-SiC MOSFET , 1986, IEEE Electron Device Letters.

[56]  Chu Ax,et al.  Theory of oxide defects near the Si-SiO2 interface. , 1990 .

[57]  Max J. Schulz,et al.  Band offsets and electronic structure of SiC/SiO2 interfaces , 1996 .

[58]  Stesmans Structural relaxation of Pb defects at the (111)Si/SiO2 interface as a function of oxidation temperature: The Pb-generation-stress relationship. , 1993, Physical review. B, Condensed matter.

[59]  Robert F. Davis,et al.  Temperature dependence of the current‐voltage characteristics of metal‐semiconductor field‐effect transistors in n‐type β‐SiC grown via chemical vapor deposition , 1987 .

[60]  Michael R. Melloch,et al.  Characterization and optimization of the SiO2/SiC metal-oxide semiconductor interface , 1995 .

[61]  Dong Ning Wang,et al.  On the correlation between the carbon content and the electrical quality of thermally grown oxides on p-type 6H–Silicon carbide , 1998 .

[62]  Michael Bassler,et al.  “Carbon cluster model” for electronic states at interfaces , 1997 .

[63]  Martin G. Buehler,et al.  A study of the gold acceptor in a silicon p+n junction and an n-type MOS capacitor by thermally stimulated current and capacitance measurements☆ , 1976 .

[64]  H. Lendenmann,et al.  Characterisation and Defects in Silicon Carbide , 2002 .

[65]  O. W. Holland,et al.  Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide , 2001, IEEE Electron Device Letters.

[66]  H. Morkoç,et al.  Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies , 1994 .

[67]  Mario G. Ancona,et al.  Using the Hall effect to measure interface trap densities in silicon carbide and silicon metal-oxide-semiconductor devices , 2002 .

[68]  Robert F. Pierret,et al.  Semiconductor device fundamentals , 1996 .

[69]  R. Kumar,et al.  SiC Integrated MOSFETs , 1997 .

[70]  Tsunenobu Kimoto,et al.  Traps at the SiC/SiO 2 -Interface , 2000 .

[71]  Andre Stesmans,et al.  Mechanisms responsible for improvement of 4H-SiC/SiO2 interface properties by nitridation , 2003 .

[72]  M. Spencer,et al.  Chapter 2 SiC Fabrication Technology: Growth and Doping , 1998 .

[73]  H. B. Harrison,et al.  Properties of Nitrided Oxides on SiC , 2004 .

[74]  P.T. Lai,et al.  Effects of wet N/sub 2/O oxidation on interface properties of 6H-SiC MOS capacitors , 2002, IEEE Electron Device Letters.

[75]  P. Shenoy,et al.  The planar 6H-SiC ACCUFET: a new high-voltage power MOSFET structure , 1997, IEEE Electron Device Letters.

[76]  Heinrich Kurz,et al.  Effects of Ar and H2 annealing on the electrical properties of oxides on 6H SiC , 1995 .

[77]  Michael R. Melloch,et al.  Characteristics of inversion-channel and buried-channel MOS devices in 6H-SiC , 1994 .

[78]  M. E. Zvanut,et al.  Generation and annealing characteristics of paramagnetic centers in oxidized 3C-SiC and 6H-SiC , 1999 .

[79]  John W. Palmour,et al.  High-Current, NO-Annealed Lateral 4H-SiC MOSFETs , 2002 .

[80]  Sergio A. Ajuria,et al.  Furnace formation of silicon oxynitride thin dielectrics in nitrous oxide (N2O): The role of nitric oxide (NO) , 1994 .

[81]  L. Terman An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes , 1962 .

[82]  H. B. Harrison,et al.  SIMS analysis of nitrided oxides grown on 4H-SiC , 1999 .

[83]  Adrian Powell,et al.  SiC materials-progress, status, and potential roadblocks , 2002, Proc. IEEE.

[84]  Andre Stesmans,et al.  H-complexed oxygen vacancy in SiO2: Energy level of a negatively charged state , 1997 .

[85]  H. B. Harrison,et al.  Improved reliability of NO-nitrided SiO2 grown on p-type 4H-SiC , 1998, IEEE Electron Device Letters.

[86]  B. J. Baliga,et al.  Trends in power semiconductor devices , 1996 .

[87]  Peter Friedrichs,et al.  Enhanced channel mobility of 4H–SiC metal–oxide–semiconductor transistors fabricated with standard polycrystalline silicon technology and gate-oxide nitridation , 2002 .

[88]  V. Afanas'ev,et al.  Electronic properties of SiO2SiC interfaces , 1999 .

[89]  Hiroyuki Yaguchi,et al.  Composition analysis of SiO2/SiC interfaces by electron spectroscopic measurements using slope-shaped oxide films , 2001 .

[90]  Leif I. Johansson,et al.  Morphology, Atomic and Electronic Structure of 6H-SiC(0001) Surfaces , 1997 .

[91]  Valeri Afanas'ev Electronic properties of SiO2/SiC interfaces , 1999 .

[92]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[93]  Andre Stesmans,et al.  Observation of Carbon Clusters at the 4H-SiC/SiO2 Interface , 1997 .