The uniform Korn–Poincaré inequality in thin domains
暂无分享,去创建一个
[1] A. Korn. Solution générale du problème d'équilibre dans la théorie de l'élasticité, dans le cas ou les efforts sont donnés à la surface , 1908 .
[2] Robert V. Kohn,et al. A new model for thin plates with rapidly varying thickness , 1984 .
[3] Hans F. Weinberger,et al. On Korn's inequality , 1961 .
[4] 正人 木村. Max-Planck-Institute for Mathematics in the Sciences(海外,ラボラトリーズ) , 2001 .
[5] R. Kohn,et al. A New Model for Thin Plates with Rapidly Varying Thickness. II. A Convergence Proof. , 1985 .
[6] G. Friesecke,et al. Mathematik in den Naturwissenschaften Leipzig A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence , 2005 .
[7] Geneviève Raugel,et al. Dynamics of partial differential equations on thin domains , 1995 .
[8] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[9] Cornelius O. Horgan,et al. Korn's Inequalities and Their Applications in Continuum Mechanics , 1995, SIAM Rev..
[10] G. Friesecke,et al. A theorem on geometric rigidity and the derivation of nonlinear plate theory from three‐dimensional elasticity , 2002 .
[11] Kurt Friedrichs,et al. On the Boundary-Value Problems of the Theory of Elasticity and Korn's Inequality , 1947 .
[12] K. Nomizu,et al. Foundations of Differential Geometry , 1963 .
[13] On Poincaré Type Inequalities , 1997 .
[14] I. Holopainen. Riemannian Geometry , 1927, Nature.
[15] George R. Sell,et al. Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions , 1993 .
[16] A. Kufner. Weighted Sobolev Spaces , 1985 .
[17] G. Sell,et al. Navier-Stokes equations in thin 3D domains with Navier boundary conditions , 2007 .
[18] G. Griso. Asymptotic behaviour of curved rods by the unfolding method , 2004 .
[19] J. Jost,et al. A Riemannian version of Korn's inequality , 2002 .
[20] J. Nédélec,et al. Functional spaces for norton‐hoff materials , 1986 .
[21] Decompositions of displacements of thin structures , 2008 .
[22] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[23] B. Nowakowski,et al. Strong solutions to the Navier-Stokes equations on thin 3D domains , 2012, 1204.5988.