Challenges of today for Na-based batteries of the future: From materials to cell metrics

[1]  M. Islam,et al.  Mechanochemical synthesis and ion transport properties of Na3OX (X = Cl, Br, I and BH4) antiperovskite solid electrolytes , 2020, Journal of Power Sources.

[2]  Zonghai Chen,et al.  A practical phosphorus-based anode material for high-energy lithium-ion batteries , 2020, Nano Energy.

[3]  A. Hayashi,et al.  All-solid-state sodium-sulfur battery showing full capacity with activated carbon MSP20-sulfur-Na3SbS4 composite , 2020 .

[4]  S. Adams,et al.  First-principles study of superionic Na9+xSnxM3−xS12 (M = P, Sb) , 2020, Materials Advances.

[5]  David M. Reed,et al.  Controlling Surface Phase Transition and Chemical Reactivity of O3-Layered Metal Oxide Cathodes for High-Performance Na-Ion Batteries , 2020 .

[6]  S. Passerini,et al.  Challenges and Strategies for High‐Energy Aqueous Electrolyte Rechargeable Batteries , 2020, Angewandte Chemie.

[7]  Zhen Zhou,et al.  Towards practical lithium-metal anodes. , 2020, Chemical Society reviews.

[8]  Yang‐Kook Sun Direction for Commercialization of O3-Type Layered Cathodes for Sodium-Ion Batteries , 2020 .

[9]  G. G. Eshetu,et al.  Electrolytes and Interphases in Sodium‐Based Rechargeable Batteries: Recent Advances and Perspectives , 2020, Advanced Energy Materials.

[10]  Philipp Adelhelm,et al.  Sodium-Storage Behavior of Exfoliated MoS2 as an Electrode Material for Solid-State Batteries with Na3PS4 as the Solid Electrolyte , 2020 .

[11]  Lifang Jiao,et al.  Polyanion-type cathode materials for sodium-ion batteries. , 2020, Chemical Society reviews.

[12]  Thorben Krauskopf,et al.  Materials design of ionic conductors for solid state batteries , 2020, Progress in Energy.

[13]  Lixin Qiao,et al.  Review—Polymer Electrolytes for Sodium Batteries , 2020, Journal of The Electrochemical Society.

[14]  H. Althues,et al.  Challenges and Key Parameters of Lithium-Sulfur Batteries on Pouch Cell Level , 2020, Joule.

[15]  Pascal Hartmann,et al.  A Sodium Polysulfide Battery with Liquid/Solid Electrolyte: Improving Sulfur Utilization Using P 2 S 5 as Additive and Tetramethylurea as Catholyte Solvent , 2020 .

[16]  S. Dou,et al.  The Cathode Choice for Commercialization of Sodium‐Ion Batteries: Layered Transition Metal Oxides versus Prussian Blue Analogs , 2020, Advanced Functional Materials.

[17]  Q. Jiang,et al.  Recent progress on metallic Sn- and Sb-based anodes for sodium-ion batteries , 2020 .

[18]  L. Archer,et al.  Designing solid-state electrolytes for safe, energy-dense batteries , 2020, Nature Reviews Materials.

[19]  Chemical Properties , 2020, Definitions.

[20]  J. Tarascon,et al.  The Role of Divalent (Zn2+/Mg2+/Cu2+) Substituents in Achieving Full Capacity of Sodium Layered Oxides for Na-Ion Battery Applications , 2020 .

[21]  F. Ciucci,et al.  Molybdenum sulfide-based nanomaterials for rechargeable batteries. , 2020, Chemistry.

[22]  Yunhui Huang,et al.  Bridging the immiscibility of an all-fluoride fire extinguishant with highly-fluorinated electrolytes toward safe sodium metal batteries , 2020, Energy & Environmental Science.

[23]  Shihan Qi,et al.  Progress on iron oxides and chalcogenides as anodes for sodium-ion batteries , 2020 .

[24]  F. Ciucci,et al.  Non-flammable electrolyte for dendrite-free sodium-sulfur battery , 2019 .

[25]  Chenglong Zhao,et al.  A novel NASICON-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity , 2019 .

[26]  D. Bresser,et al.  Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium‐ and Sodium‐Ion Batteries , 2019, Advanced Energy Materials.

[27]  L. Croguennec,et al.  DFT-assisted 31P and 23Na MAS-NMR study of the Na3V2(PO4)2F3 – Na3V2(PO4)2FO2 solid solution: unravelling its local and electronic structures , 2019 .

[28]  Zhizhen Zhang,et al.  Coupled Cation-Anion Dynamics Enhances Cation Mobility in Room Temperature Superionic Solid-State Electrolytes. , 2019, Journal of the American Chemical Society.

[29]  Kunlei Zhu,et al.  How Far Away Are Lithium-Sulfur Batteries From Commercialization? , 2019, Front. Energy Res..

[30]  F. Fauth,et al.  A New Superionic Plastic Polymorph of the Na+ Conductor Na3PS4 , 2019, ACS Materials Letters.

[31]  A. Hayashi,et al.  A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature , 2019, Nature Communications.

[32]  Erik J. Berg,et al.  A modeling framework to assess specific energy, costs and environmental impacts of Li-ion and Na-ion batteries , 2019, Sustainable Energy & Fuels.

[33]  E. Kendrick,et al.  Design Strategies for High Power vs. High Energy Lithium Ion Cells , 2019, Batteries.

[34]  Yong‐Sheng Hu,et al.  Correlated Migration Invokes Higher Na+‐Ion Conductivity in NaSICON‐Type Solid Electrolytes , 2019, Advanced Energy Materials.

[35]  Changyu Shen,et al.  Recent Progress on the Alloy-Based Anode for Sodium-Ion Batteries and Potassium-Ion Batteries. , 2019, Small.

[36]  J. Tarascon,et al.  A New Electrolyte Formulation for Securing High Temperature Cycling and Storage Performances of Na‐Ion Batteries , 2019, Advanced Energy Materials.

[37]  L. Croguennec,et al.  Rechargeable aqueous electrolyte batteries: from univalent to multivalent cation chemistry , 2019, Journal of Materials Chemistry A.

[38]  R. Černý,et al.  Room-temperature-operating Na solid-state battery with complex hydride as electrolyte , 2019, Electrochemistry Communications.

[39]  H. Althues,et al.  Designing room temperature sodium sulfur batteries with long cycle-life at pouch cell level , 2019, Energy Storage Materials.

[40]  P. Simon,et al.  A SAXS outlook on disordered carbonaceous materials for electrochemical energy storage , 2019, Energy Storage Materials.

[41]  Yaxiang Lu,et al.  Intercalation chemistry of graphite: alkali metal ions and beyond. , 2019, Chemical Society reviews.

[42]  Christian Masquelier,et al.  Fundamentals of inorganic solid-state electrolytes for batteries , 2019, Nature Materials.

[43]  J. Tarascon,et al.  Reaching the Energy Density Limit of Layered O3‐NaNi0.5Mn0.5O2 Electrodes via Dual Cu and Ti Substitution , 2019, Advanced Energy Materials.

[44]  Erik J. Berg,et al.  Stable and instable diglyme-based electrolytes for batteries with sodium or graphite as electrode. , 2019, ACS applied materials & interfaces.

[45]  P. Adelhelm,et al.  Reactive and Nonreactive Ball Milling of Tin‐Antimony (Sn‐Sb) Composites and Their Use as Electrodes for Sodium‐Ion Batteries with Glyme Electrolyte , 2019, Energy Technology.

[46]  K. Kang,et al.  First-Principles Investigations on Sodium Superionic Conductor Na11Sn2PS12 , 2019, Chemistry of Materials.

[47]  Won‐Jin Kwak,et al.  Mutual Conservation of Redox Mediator and Singlet Oxygen Quencher in Lithium–Oxygen Batteries , 2019, ACS Catalysis.

[48]  S. Dou,et al.  Chemical Properties, Structural Properties, and Energy Storage Applications of Prussian Blue Analogues. , 2019, Small.

[49]  M. Kuenzel,et al.  Toward stable electrode/electrolyte interphase of P2-layered oxide for rechargeable Na-ion batteries. , 2019, ACS applied materials & interfaces.

[50]  A. Hayashi,et al.  Suspension synthesis of Na3-PS4-Cl solid electrolytes , 2019, Journal of Power Sources.

[51]  F. Fauth,et al.  Stability in water and electrochemical properties of the Na3V2(PO4)2F3 – Na3(VO)2(PO4)2F solid solution , 2019, Energy Storage Materials.

[52]  Li Lu,et al.  Development of solid-state electrolytes for sodium-ion battery–A short review , 2019, Nano Materials Science.

[53]  S. Passerini,et al.  Ionic Liquid-Based Electrolytes for Sodium-Ion Batteries: Tuning Properties To Enhance the Electrochemical Performance of Manganese-Based Layered Oxide Cathode. , 2019, ACS applied materials & interfaces.

[54]  Yuki Yamada,et al.  Reversible Sodium Metal Electrodes: Is Fluorine an Essential Interphasial Component? , 2019, Angewandte Chemie.

[55]  A. Manthiram,et al.  Current Status and Future Prospects of Metal–Sulfur Batteries , 2019, Advanced materials.

[56]  L. Duchêne,et al.  Ionic Conduction Mechanism in the Na2(B12H12)0.5(B10H10)0.5 closo-Borate Solid-State Electrolyte: Interplay of Disorder and Ion–Ion Interactions , 2019, Chemistry of Materials.

[57]  Eunsu Paek,et al.  Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. , 2019, Chemical reviews.

[58]  Jun Lu,et al.  Automotive Li-Ion Batteries: Current Status and Future Perspectives , 2019, Electrochemical Energy Reviews.

[59]  Hong Jiang,et al.  Rotational Cluster Anion Enabling Superionic Conductivity in Sodium-Rich Antiperovskite Na3OBH4. , 2019, Journal of the American Chemical Society.

[60]  P. Adelhelm,et al.  Sodium Storage and Electrode Dynamics of Tin–Carbon Composite Electrodes from Bulk Precursors for Sodium‐Ion Batteries , 2019, Advanced Functional Materials.

[61]  Stefano Passerini,et al.  Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry , 2019, Materials Today.

[62]  Yan‐Bing He,et al.  Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes , 2019, Nature Communications.

[63]  G. Nikiforidis,et al.  High and intermediate temperature sodium–sulfur batteries for energy storage: development, challenges and perspectives , 2019, RSC advances.

[64]  Marc Wentker,et al.  A Bottom-Up Approach to Lithium-Ion Battery Cost Modeling with a Focus on Cathode Active Materials , 2019, Energies.

[65]  M. Deschamps,et al.  Higher energy and safer sodium ion batteries via an electrochemically made disordered Na3V2(PO4)2F3 material , 2019, Nature Communications.

[66]  J. Tu,et al.  Multiscale Graphene‐Based Materials for Applications in Sodium Ion Batteries , 2019, Advanced Energy Materials.

[67]  M. Weil,et al.  Exploring the Economic Potential of Sodium-Ion Batteries , 2019, Batteries.

[68]  T. Rojo,et al.  Hard Carbon as Sodium-Ion Battery Anodes: Progress and Challenges. , 2018, ChemSusChem.

[69]  J. Buriak,et al.  Sb–Si Alloys and Multilayers for Sodium-Ion Battery Anodes , 2018, ACS Applied Energy Materials.

[70]  M. Armand,et al.  Stable cycling of NaFePO4 cathodes in high salt concentration ionic liquid electrolytes , 2018, Journal of Power Sources.

[71]  K. Stevenson,et al.  Enhancing Na+ Extraction Limit through High Voltage Activation of the NASICON-Type Na4MnV(PO4)3 Cathode , 2018, ACS Applied Energy Materials.

[72]  A. Gross,et al.  Insight into Sodium Insertion and the Storage Mechanism in Hard Carbon , 2018, ACS Energy Letters.

[73]  Thorben Krauskopf,et al.  Comparing the Descriptors for Investigating the Influence of Lattice Dynamics on Ionic Transport Using the Superionic Conductor Na3PS4- xSe x. , 2018, Journal of the American Chemical Society.

[74]  A. Chroneos,et al.  Defects, Dopants and Sodium Mobility in Na2MnSiO4 , 2018, Scientific Reports.

[75]  M. Pasta,et al.  Prussian Blue Analogs as Battery Materials , 2018, Joule.

[76]  M. Armand,et al.  A room-temperature sodium–sulfur battery with high capacity and stable cycling performance , 2018, Nature Communications.

[77]  F. Fauth,et al.  High Rate Performance for Carbon‐Coated Na 3 V 2 (PO 4 ) 2 F 3 in Na‐Ion Batteries , 2018, Small Methods.

[78]  K. Kubota,et al.  Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries , 2018 .

[79]  Kota Suzuki,et al.  Sodium superionic conduction in tetragonal Na3PS4 , 2018, Journal of Solid State Chemistry.

[80]  Vadim M. Kovrugin,et al.  A NASICON‐Type Positive Electrode for Na Batteries with High Energy Density: Na 4 MnV(PO 4 ) 3 , 2018, Small Methods.

[81]  M. Razeghi Defects , 2018, Fundamentals of Solid State Engineering.

[82]  Zhizhen Zhang,et al.  Correlating Ion Mobility and Single Crystal Structure in Sodium-Ion Chalcogenide-Based Solid State Fast Ion Conductors: Na11Sn2PnS12 (Pn = Sb, P) , 2018 .

[83]  Q. Ma,et al.  Fast Na ion transport triggered by rapid ion exchange on local length scales , 2018, Scientific Reports.

[84]  Linda F. Nazar,et al.  New horizons for inorganic solid state ion conductors , 2018 .

[85]  F. Fauth,et al.  On the dynamics of transition metal migration and its impact on the performance of layered oxides for sodium-ion batteries: NaFeO2 as a case study , 2018 .

[86]  M. Armand,et al.  Highly Efficient, Cost Effective, and Safe Sodiation Agent for High-Performance Sodium-Ion Batteries. , 2018, ChemSusChem.

[87]  Xiulei Ji,et al.  Internal structure – Na storage mechanisms – Electrochemical performance relations in carbons , 2018, Progress in Materials Science.

[88]  M. Casas-Cabanas,et al.  Rate dependence of the reaction mechanism in olivine NaFePO4 Na‐ion cathode material , 2018 .

[89]  Chenglong Zhao,et al.  High-temperature treatment induced carbon anode with ultrahigh Na storage capacity at low-voltage plateau. , 2018, Science bulletin.

[90]  S. Passerini,et al.  Aqueous/Nonaqueous Hybrid Electrolyte for Sodium-Ion Batteries , 2018, ACS Energy Letters.

[91]  J. Barker,et al.  The Scale‐up and Commercialization of Nonaqueous Na‐Ion Battery Technologies , 2018 .

[92]  T. Rojo,et al.  From Charge Storage Mechanism to Performance: A Roadmap toward High Specific Energy Sodium‐Ion Batteries through Carbon Anode Optimization , 2018 .

[93]  K. Kubota,et al.  Electrochemistry and Solid‐State Chemistry of NaMeO2 (Me = 3d Transition Metals) , 2018, Advanced Energy Materials.

[94]  C. Delmas,et al.  Sodium and Sodium‐Ion Batteries: 50 Years of Research , 2018 .

[95]  Chenglong Zhao,et al.  Solid‐State Sodium Batteries , 2018 .

[96]  Huang Zhang,et al.  Beyond Insertion for Na‐Ion Batteries: Nanostructured Alloying and Conversion Anode Materials , 2018 .

[97]  E. Kendrick,et al.  The re-emergence of sodium ion batteries: testing, processing, and manufacturability , 2018, Nanotechnology, science and applications.

[98]  Chunsheng Wang,et al.  Progress in Aqueous Rechargeable Sodium‐Ion Batteries , 2018 .

[99]  J. Tarascon,et al.  Diglyme Based Electrolytes for Sodium-Ion Batteries , 2018 .

[100]  Jean-Marie Tarascon,et al.  Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries , 2018 .

[101]  S. Passerini,et al.  Towards High-Performance Aqueous Sodium-Ion Batteries: Stabilizing the Solid/Liquid Interface for NASICON-Type Na2 VTi(PO4 )3 using Concentrated Electrolytes. , 2018, ChemSusChem.

[102]  Jeunghee Park,et al.  Arsenic for high-capacity lithium- and sodium-ion batteries. , 2018, Nanoscale.

[103]  Jun Lu,et al.  Phosphorus: An Anode of Choice for Sodium-Ion Batteries , 2018 .

[104]  T. Gustafsson,et al.  On the Stability of NaO2 in Na-O2 Batteries. , 2018, ACS applied materials & interfaces.

[105]  Thorben Krauskopf,et al.  Local Tetragonal Structure of the Cubic Superionic Conductor Na3PS4. , 2018, Inorganic chemistry.

[106]  Mingdeng Wei,et al.  Preparation of a Si/SiO2 -Ordered-Mesoporous-Carbon Nanocomposite as an Anode for High-Performance Lithium-Ion and Sodium-Ion Batteries. , 2018, Chemistry.

[107]  J. Tarascon,et al.  A Chemical Approach to Raise Cell Voltage and Suppress Phase Transition in O3 Sodium Layered Oxide Electrodes , 2018 .

[108]  Yingqi Lu,et al.  Sodium–Sulfur Flow Battery for Low‐Cost Electrical Storage , 2018 .

[109]  Jingjing Xu,et al.  Mesoporous TiO2 nanosheets anchored on graphene for ultra long life Na-ion batteries , 2018, Nanotechnology.

[110]  Yue Deng,et al.  Crystal Structures, Local Atomic Environments, and Ion Diffusion Mechanisms of Scandium-Substituted Sodium Superionic Conductor (NASICON) Solid Electrolytes , 2018 .

[111]  Xiulin Fan,et al.  High-Performance All-Solid-State Na-S Battery Enabled by Casting-Annealing Technology. , 2018, ACS nano.

[112]  S. Passerini,et al.  A cost and resource analysis of sodium-ion batteries , 2018 .

[113]  K. Kubota,et al.  Synthesis and electrochemical properties of Na-rich Prussian blue analogues containing Mn, Fe, Co, and Fe for Na-ion batteries , 2018 .

[114]  C. Wessells,et al.  Monovalent manganese based anodes and co-solvent electrolyte for stable low-cost high-rate sodium-ion batteries , 2018, Nature Communications.

[115]  A. Yamada,et al.  Rhombohedral NASICON-type NaxFe2(SO4)3 for sodium ion batteries: comparison with phosphate and alluaudite phases , 2018 .

[116]  Zhizhen Zhang,et al.  Na11Sn2PS12: a new solid state sodium superionic conductor , 2018 .

[117]  T. Rojo,et al.  Toward Safe and Sustainable Batteries: Na4Fe3(PO4)2P2O7 as a Low-Cost Cathode for Rechargeable Aqueous Na-Ion Batteries , 2018 .

[118]  Prasant Kumar Nayak,et al.  From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. , 2018, Angewandte Chemie.

[119]  S. Adams,et al.  Vacancy-Controlled Na+ Superion Conduction in Na11 Sn2 PS12. , 2017, Angewandte Chemie.

[120]  J. Tarascon,et al.  Will Sodium Layered Oxides Ever Be Competitive for Sodium Ion Battery Applications , 2018 .

[121]  Tarvydas Dalius,et al.  Li-ion batteries for mobility and stationary storage applications , 2018 .

[122]  Yuki Yamada,et al.  Fire-extinguishing organic electrolytes for safe batteries , 2018 .

[123]  J. Tarascon,et al.  Assessment of the Electrochemical Stability of Carbonate-Based Electrolytes in Na-Ion Batteries , 2018 .

[124]  M. Marinescu,et al.  Perspective—Commercializing Lithium Sulfur Batteries: Are We Doing the Right Research? , 2018 .

[125]  K. Kang,et al.  Superoxide stability for reversible Na-O2 electrochemistry , 2017, Scientific Reports.

[126]  L. Duchêne,et al.  A stable 3 V all-solid-state sodium–ion battery based on a closo-borate electrolyte , 2017 .

[127]  Xiaobo Ji,et al.  Carbon Anode Materials for Advanced Sodium‐Ion Batteries , 2017 .

[128]  Yu Zhang,et al.  Alloy‐Based Anode Materials toward Advanced Sodium‐Ion Batteries , 2017, Advanced materials.

[129]  M. Wilkening,et al.  Singlet Oxygen during Cycling of the Aprotic Sodium–O2 Battery , 2017, Angewandte Chemie.

[130]  Yong‐Sheng Hu,et al.  Structure-Induced Reversible Anionic Redox Activity in Na Layered Oxide Cathode , 2017 .

[131]  Feng Wu,et al.  Quick Activation of Nanoporous Anatase TiO2 as High-Rate and Durable Anode Materials for Sodium-Ion Batteries. , 2017, ACS applied materials & interfaces.

[132]  P. Adelhelm,et al.  Cell Concepts of Metal–Sulfur Batteries (Metal = Li, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications , 2017, Topics in current chemistry.

[133]  W. Han,et al.  Metallic Sn‐Based Anode Materials: Application in High‐Performance Lithium‐Ion and Sodium‐Ion Batteries , 2017, Advanced science.

[134]  Jun Liu,et al.  Manipulating Adsorption–Insertion Mechanisms in Nanostructured Carbon Materials for High‐Efficiency Sodium Ion Storage , 2017 .

[135]  Chenghao Yang,et al.  Three-dimensional N-doped graphene as anode material with superior cycle stability for sodium ion batteries , 2017 .

[136]  Huakun Liu,et al.  Phosphorus and phosphide nanomaterials for sodium-ion batteries , 2017, Nano Research.

[137]  Ruben-Simon Kühnel,et al.  A High-Voltage Aqueous Electrolyte for Sodium-Ion Batteries , 2017 .

[138]  Jun Chen,et al.  Bulk Bismuth as a High‐Capacity and Ultralong Cycle‐Life Anode for Sodium‐Ion Batteries by Coupling with Glyme‐Based Electrolytes , 2017, Advanced materials.

[139]  Zonghai Chen,et al.  Insights into the structural effects of layered cathode materials for high voltage sodium-ion batteries , 2017 .

[140]  J. Tarascon,et al.  Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-ion cells based on P2- NaxMO2 electrodes , 2017 .

[141]  J. L. Gómez‐Cámer,et al.  Na‐Ion Batteries for Large Scale Applications: A Review on Anode Materials and Solid Electrolyte Interphase Formation , 2017 .

[142]  Rezan Demir‐Cakan,et al.  Investigation of the Effect of Using Al2O3–Nafion Barrier on Room-Temperature Na–S Batteries , 2017 .

[143]  Li-zhen Fan,et al.  Research and application progress on key materials for sodium-ion batteries , 2017 .

[144]  Zhe Hu,et al.  Advances and Challenges in Metal Sulfides/Selenides for Next‐Generation Rechargeable Sodium‐Ion Batteries , 2017, Advanced materials.

[145]  Karina B. Hueso,et al.  Challenges and perspectives on high and intermediate-temperature sodium batteries , 2017, Nano Research.

[146]  A. Hayashi,et al.  All-Solid-State Na/S Batteries with a Na3PS4 Electrolyte Operating at Room Temperature , 2017 .

[147]  Stefan A. Freunberger,et al.  True performance metrics in beyond-intercalation batteries , 2017, Nature Energy.

[148]  Clement Bommier,et al.  Mechanism of Na‐Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping , 2017 .

[149]  J. Buriak,et al.  Sn–Bi–Sb alloys as anode materials for sodium ion batteries , 2017 .

[150]  Jusef Hassoun,et al.  Nanostructured Na-ion and Li-ion anodes for battery application: A comparative overview , 2017, Nano Research.

[151]  F. Nobili,et al.  Influence of Using Metallic Na on the Interfacial and Transport Properties of Na-Ion Batteries , 2017 .

[152]  L. Duchêne,et al.  A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture. , 2017, Chemical communications.

[153]  R. Černý,et al.  Modified Anion Packing of Na2B12H12 in Close to Room Temperature Superionic Conductors. , 2017, Inorganic chemistry.

[154]  G. B. Appetecchi,et al.  About the Purification Route of Ionic Liquid Precursors , 2017 .

[155]  S. Orimo,et al.  Fast sodium ionic conduction in Na2B10H10-Na2B12H12 pseudo-binary complex hydride and application to a bulk-type all-solid-state battery , 2017 .

[156]  S. Passerini,et al.  Exploring the Ni redox activity in polyanionic compounds as conceivable high potential cathodes for Na rechargeable batteries , 2017 .

[157]  F. Fauth,et al.  VIV Disproportionation Upon Sodium Extraction From Na3V2(PO4)2F3 Observed by Operando X-ray Absorption Spectroscopy and Solid-State NMR , 2017 .

[158]  Quan-hong Yang,et al.  Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase , 2017 .

[159]  D. Yan,et al.  Significantly Improved Sodium-Ion Storage Performance of CuS Nanosheets Anchored into Reduced Graphene Oxide with Ether-Based Electrolyte. , 2017, ACS applied materials & interfaces.

[160]  B. Stempel,et al.  Past, Present, and Future: Lithium Ion Batteries , 2017 .

[161]  Lin Liu Sodium-Ion Battery , 2017 .

[162]  Jiang Zhou,et al.  Nitrogen-doped TiO2 nanospheres for advanced sodium-ion battery and sodium-ion capacitor applications , 2016 .

[163]  D. Brandell,et al.  Solubility of the Solid Electrolyte Interphase (SEI) in Sodium Ion Batteries , 2016 .

[164]  John B Goodenough,et al.  NaxMV(PO4)3 (M = Mn, Fe, Ni) Structure and Properties for Sodium Extraction. , 2016, Nano letters.

[165]  Shouwu Guo,et al.  TiO2 nanotubes wrapped with reduced graphene oxide as a high-performance anode material for lithium-ion batteries , 2016, Scientific Reports.

[166]  Ting Lu,et al.  One-step microwave-assisted synthesis of Sb2O3/reduced graphene oxide composites as advanced anode materials for sodium-ion batteries , 2016 .

[167]  G. Cui,et al.  High performance germanium-based anode materials , 2016 .

[168]  D. A. D. Corte,et al.  Microsized Sn as Advanced Anodes in Glyme‐Based Electrolyte for Na‐Ion Batteries , 2016, Advanced materials.

[169]  F. Nobili,et al.  Direct observation of electronic conductivity transitions and solid electrolyte interphase stability of Na2Ti3O7 electrodes for Na-ion batteries , 2016 .

[170]  Erik J. Berg,et al.  Strong Oxygen Participation in the Redox Governing the Structural and Electrochemical Properties of Na-Rich Layered Oxide Na2IrO3 , 2016 .

[171]  F. Fauth,et al.  Strong Impact of the Oxygen Content in Na3V2(PO4)2F3–yOy (0 ≤ y ≤ 0.5) on Its Structural and Electrochemical Properties , 2016 .

[172]  Shouwu Guo,et al.  Micro-nano structure hard carbon as a high performance anode material for sodium-ion batteries , 2016, Scientific Reports.

[173]  Oliver Pecher,et al.  Mechanistic insights into sodium storage in hard carbon anodes using local structure probes. , 2016, Chemical communications.

[174]  Haoshen Zhou,et al.  Recent advances in titanium-based electrode materials for stationary sodium-ion batteries , 2016 .

[175]  G. Ceder,et al.  Jahn − Teller Assisted Na Di ff usion for High Performance Na Ion Batteries , 2016 .

[176]  Lee Johnson,et al.  High Capacity Na–O2 Batteries: Key Parameters for Solution-Mediated Discharge , 2016 .

[177]  Linda F. Nazar,et al.  Advances in understanding mechanisms underpinning lithium–air batteries , 2016, Nature Energy.

[178]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[179]  G. Giffin Ionic liquid-based electrolytes for “beyond lithium” battery technologies , 2016 .

[180]  T. Rojo,et al.  Electrochemical characterization of NaFe2(CN)6 Prussian Blue as positive electrode for aqueous sodium-ion batteries , 2016 .

[181]  Seung M. Oh,et al.  Na3 SbS4 : A Solution Processable Sodium Superionic Conductor for All-Solid-State Sodium-Ion Batteries. , 2016, Angewandte Chemie.

[182]  Chenglong Zhao,et al.  Sodium‐Deficient O3‐Na0.9[Ni0.4Mn xTi0.6−x]O2 Layered‐Oxide Cathode Materials for Sodium‐Ion Batteries , 2016 .

[183]  W. Richards,et al.  Structure and Dynamics of Fluorophosphate Na-Ion Battery Cathodes , 2016 .

[184]  Zachary D. Hood,et al.  An Air-Stable Na3 SbS4 Superionic Conductor Prepared by a Rapid and Economic Synthetic Procedure. , 2016, Angewandte Chemie.

[185]  Zhenxiang Cheng,et al.  Boron-Doped Anatase TiO2 as a High-Performance Anode Material for Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[186]  D. Bresser,et al.  Combining ionic liquid-based electrolytes and nanostructured anatase TiO2 anodes for intrinsically safer sodium-ion batteries , 2016 .

[187]  Yaolin Xu,et al.  Reversible Na‐Ion Uptake in Si Nanoparticles , 2016 .

[188]  S. Choudhury,et al.  A stable room-temperature sodium–sulfur battery , 2016, Nature Communications.

[189]  G. Ceder,et al.  Structural and Na-ion conduction characteristics of Na3PSxSe4−x , 2016 .

[190]  H. Gasteiger,et al.  Singlet Oxygen Formation during the Charging Process of an Aprotic Lithium-Oxygen Battery. , 2016, Angewandte Chemie.

[191]  Laurence J. Hardwick,et al.  Solvent‐Mediated Control of the Electrochemical Discharge Products of Non‐Aqueous Sodium–Oxygen Electrochemistry , 2016, Angewandte Chemie.

[192]  Jens F. Peters,et al.  Life cycle assessment of sodium-ion batteries , 2016 .

[193]  M. Wagemaker,et al.  Diffusion Mechanism of the Sodium-Ion Solid Electrolyte Na3PS4 and Potential Improvements of Halogen Doping , 2016 .

[194]  D. Weber,et al.  Insights into the Chemical Nature and Formation Mechanisms of Discharge Products in Na–O2 Batteries by Means of Operando X-ray Diffraction , 2016 .

[195]  Xianyou Wang,et al.  Co3S4@polyaniline nanotubes as high-performance anode materials for sodium ion batteries , 2016 .

[196]  Hui Xu,et al.  The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries , 2016 .

[197]  Bruno Scrosati,et al.  A sodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte , 2016 .

[198]  Lianzhou Wang,et al.  Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage , 2016 .

[199]  Shyue Ping Ong,et al.  Design and synthesis of the superionic conductor Na10SnP2S12 , 2016, Nature Communications.

[200]  Yi Cui,et al.  Manganese-cobalt hexacyanoferrate cathodes for sodium-ion batteries , 2016 .

[201]  G. G. Eshetu,et al.  Comprehensive Insights into the Reactivity of Electrolytes Based on Sodium Ions. , 2016, ChemSusChem.

[202]  H. Althues,et al.  Hard Carbon Anodes and Novel Electrolytes for Long‐Cycle‐Life Room Temperature Sodium‐Sulfur Full Cell Batteries , 2016 .

[203]  Haegyeom Kim,et al.  Dissolution and ionization of sodium superoxide in sodium–oxygen batteries , 2016, Nature Communications.

[204]  L. Monconduit,et al.  Reinstating lead for high-loaded efficient negative electrode for rechargeable sodium-ion battery , 2016 .

[205]  J. Hassoun,et al.  Characteristics of an ionic liquid electrolyte for sodium-ion batteries , 2016 .

[206]  A. Manthiram,et al.  Performance Enhancement and Mechanistic Studies of Room-Temperature Sodium–Sulfur Batteries with a Carbon-Coated Functional Nafion Separator and a Na2S/Activated Carbon Nanofiber Cathode , 2016 .

[207]  W. Luo,et al.  Na-Ion Battery Anodes: Materials and Electrochemistry. , 2016, Accounts of chemical research.

[208]  J. Janek,et al.  Reaction Mechanism and Surface Film Formation of Conversion Materials for Lithium- and Sodium-Ion Batteries: An XPS Case Study on Sputtered Copper Oxide (CuO) Thin Film Model Electrodes , 2016 .

[209]  W. Tremel,et al.  Extraordinary Performance of Carbon‐Coated Anatase TiO2 as Sodium‐Ion Anode , 2015, Advanced energy materials.

[210]  S. Passerini,et al.  Layered Na‐Ion Cathodes with Outstanding Performance Resulting from the Synergetic Effect of Mixed P‐ and O‐Type Phases , 2015, Advanced energy materials.

[211]  J. Tarascon,et al.  Na Reactivity toward Carbonate-Based Electrolytes: The Effect of FEC as Additive , 2016 .

[212]  V. Stavila,et al.  Unparalleled Lithium and Sodium Superionic Conduction in Solid Electrolytes with Large Monovalent Cage-like Anions. , 2015, Energy & environmental science.

[213]  Clement Bommier,et al.  Electrochemically Expandable Soft Carbon as Anodes for Na-Ion Batteries , 2015, ACS central science.

[214]  Kang Xu,et al.  “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries , 2015, Science.

[215]  Yi Cui,et al.  A Highly Reversible Room-Temperature Sodium Metal Anode , 2015, ACS central science.

[216]  Yongchang Liu,et al.  Tin Nanodots Encapsulated in Porous Nitrogen‐Doped Carbon Nanofibers as a Free‐Standing Anode for Advanced Sodium‐Ion Batteries , 2015, Advanced materials.

[217]  J. Liang,et al.  Phosphorus Nanoparticles Encapsulated in Graphene Scrolls as a High‐Performance Anode for Sodium‐Ion Batteries , 2015 .

[218]  Guangyuan Zheng,et al.  A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. , 2015, Nature nanotechnology.

[219]  Hyunchul Kim,et al.  Sodium intercalation chemistry in graphite , 2015 .

[220]  R. Hagiwara,et al.  Electrochemical performance of hard carbon negative electrodes for ionic liquid-based sodium ion batteries over a wide temperature range , 2015 .

[221]  Xiulei Ji,et al.  New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon. , 2015, Nano letters.

[222]  C. Masquelier,et al.  Improving the energy density of Na3V2(PO4)3-based positive electrodes through V/Al substitution , 2015 .

[223]  N. Birbilis,et al.  High capacity group-15 alloy anodes for Na-ion batteries: electrochemical and mechanical insights , 2015 .

[224]  Yan Yao,et al.  Enhancing sodium-ion battery performance with interlayer-expanded MoS2–PEO nanocomposites , 2015 .

[225]  Jia Ding,et al.  Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance. , 2015, Accounts of chemical research.

[226]  B. Hwang,et al.  O3–NaxMn1/3Fe2/3O2 as a positive electrode material for Na-ion batteries: structural evolutions and redox mechanisms upon Na+ (de)intercalation , 2015 .

[227]  Clement Bommier,et al.  Recent Development on Anodes for Na‐Ion Batteries , 2015 .

[228]  Philipp Adelhelm,et al.  From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries , 2015, Beilstein journal of nanotechnology.

[229]  F. Fauth,et al.  Comprehensive Investigation of the Na3V2(PO4)2F3–NaV2(PO4)2F3 System by Operando High Resolution Synchrotron X-ray Diffraction , 2015 .

[230]  T. Rojo,et al.  Composition and evolution of the solid-electrolyte interphase in Na2Ti3O7 electrodes for Na-ion batteries: XPS and Auger parameter analysis. , 2015, ACS applied materials & interfaces.

[231]  Guoxiu Wang,et al.  MoS2/Graphene Composite Anodes with Enhanced Performance for Sodium‐Ion Batteries: The Role of the Two‐Dimensional Heterointerface , 2015 .

[232]  S. Dou,et al.  Bismuth: A new anode for the Na-ion battery , 2015 .

[233]  B. Scrosati,et al.  The role of graphene for electrochemical energy storage. , 2015, Nature materials.

[234]  Jusef Hassoun,et al.  A comparative study of layered transition metal oxide cathodes for application in sodium-ion battery. , 2015, ACS applied materials & interfaces.

[235]  Graeme Henkelman,et al.  Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. , 2015, Journal of the American Chemical Society.

[236]  Zhuo. Sun,et al.  MoS2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance , 2015 .

[237]  Chung‐Jen Tseng,et al.  Rechargeable Na/Na0.44MnO2 cells with ionic liquid electrolytes containing various sodium solutes , 2015 .

[238]  Lifang Jiao,et al.  Exfoliated-SnS₂ restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. , 2015, Nanoscale.

[239]  K. Kubota,et al.  Review-Practical Issues and Future Perspective for Na-Ion Batteries , 2015 .

[240]  B. Steen,et al.  Non-aqueous electrolytes for sodium-ion batteries , 2015 .

[241]  J. Whitacre,et al.  Relating Electrolyte Concentration to Performance and Stability for NaTi2(PO4)3/Na0.44MnO2 Aqueous Sodium-Ion Batteries , 2015 .

[242]  Xiao‐Qing Yang,et al.  O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O2: A quaternary layered cathode compound for rechargeable Na ion batteries , 2014 .

[243]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[244]  Philipp Adelhelm,et al.  Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. , 2014, Angewandte Chemie.

[245]  Masahiro Tatsumisago,et al.  X‐ray Crystal Structure Analysis of Sodium‐Ion Conductivity in 94 Na3PS4⋅6 Na4SiS4 Glass‐Ceramic Electrolytes , 2014 .

[246]  A. Yamada,et al.  Sodium-ion battery cathodes Na2FeP2O7 and Na2MnP2O7: diffusion behaviour for high rate performance , 2014 .

[247]  F. Fauth,et al.  Na3V2(PO4)2F3 Revisited: A High-Resolution Diffraction Study , 2014 .

[248]  Yongil Kim,et al.  Tin Phosphide as a Promising Anode Material for Na‐Ion Batteries , 2014, Advanced materials.

[249]  N. Sharma,et al.  Sodium Distribution and Reaction Mechanisms of a Na3V2O2(PO4)2F Electrode during Use in a Sodium-Ion Battery , 2014 .

[250]  Yu-Guo Guo,et al.  High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries , 2014 .

[251]  Kevin G. Gallagher,et al.  Quantifying the promise of lithium–air batteries for electric vehicles , 2014 .

[252]  D. Mitlin,et al.  Anodes for sodium ion batteries based on tin-germanium-antimony alloys. , 2014, ACS nano.

[253]  S. Orimo,et al.  Complex Hydrides for Electrochemical Energy Storage , 2014 .

[254]  S. Orimo,et al.  Sodium superionic conduction in Na2B12H12. , 2014, Chemical communications.

[255]  H. Althues,et al.  Shuttle suppression in room temperature sodium-sulfur batteries using ion selective polymer membranes. , 2014, Chemical communications.

[256]  Yan Yu,et al.  Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. , 2014, Angewandte Chemie.

[257]  S. Passerini,et al.  Unexpected performance of layered sodium-ion cathode material in ionic liquid-based electrolyte , 2014 .

[258]  V. Viallet,et al.  An all-solid state NASICON sodium battery operating at 200 °C , 2014 .

[259]  Li-Jun Wan,et al.  A High‐Energy Room‐Temperature Sodium‐Sulfur Battery , 2014, Advanced materials.

[260]  J. Janek,et al.  Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na(0.7)CoO2. , 2014, Physical chemistry chemical physics : PCCP.

[261]  Y. Nishi Past, Present and Future of Lithium-Ion Batteries , 2014 .

[262]  M. Doeff,et al.  Titanate Anodes for Sodium Ion Batteries , 2014, Journal of Inorganic and Organometallic Polymers and Materials.

[263]  H. Oguchi,et al.  Sodium and magnesium ionic conduction in complex hydrides , 2013 .

[264]  Sebastian Wenzel,et al.  Thermodynamics and cell chemistry of room temperature sodium/sulfur cells with liquid and liquid/solid electrolyte , 2013 .

[265]  M. Armand,et al.  An approach to overcome first cycle irreversible capacity in P2-Na2/3[Fe1/2Mn1/2]O2 , 2013 .

[266]  Shu-Lei Chou,et al.  Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. , 2013, Nano letters.

[267]  Philipp Adelhelm,et al.  Conversion reactions for sodium-ion batteries. , 2013, Physical chemistry chemical physics : PCCP.

[268]  Gabriel M. Veith,et al.  Germanium as negative electrode material for sodium-ion batteries , 2013 .

[269]  T. Rojo,et al.  Enhanced electrochemical performance of vanadyl (IV) Na3(VO) 2(PO4)2F by ex-situ carbon coating , 2013 .

[270]  Rémi Dedryvère,et al.  Towards high energy density sodium ion batteries through electrolyte optimization , 2013 .

[271]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[272]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[273]  J. Yamaki,et al.  Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds , 2013 .

[274]  Christian Masquelier,et al.  Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. , 2013, Chemical reviews.

[275]  Seung M. Oh,et al.  Na4‐αM2+α/2(P2O7)2 (2/3 ≤ α ≤ 7/8, M = Fe, Fe0.5Mn0.5, Mn): A Promising Sodium Ion Cathode for Na‐ion Batteries , 2013 .

[276]  Y. Chiang,et al.  Towards High Power High Energy Aqueous Sodium‐Ion Batteries: The NaTi2(PO4)3/Na0.44MnO2 System , 2013 .

[277]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[278]  Teófilo Rojo,et al.  High temperature sodium batteries: status, challenges and future trends , 2013 .

[279]  Jing Zhou,et al.  Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[280]  Hongmin Zhu,et al.  Microspheric Na2Ti3O7 consisting of tiny nanotubes: an anode material for sodium-ion batteries with ultrafast charge-discharge rates. , 2013, Nanoscale.

[281]  Hiroaki Yoshida,et al.  Synthesis and Electrode Performance of O3-Type NaFeO2-NaNi1/2Mn1/2O2 Solid Solution for Rechargeable Sodium Batteries , 2013 .

[282]  Zhenguo Yang,et al.  Advanced Intermediate-Temperature Na-S Battery , 2013 .

[283]  Chunsheng Wang,et al.  Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion Batteries , 2013 .

[284]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[285]  Jean-Marie Tarascon,et al.  In search of an optimized electrolyte for Na-ion batteries , 2012 .

[286]  Wataru Murata,et al.  Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell , 2012 .

[287]  Xinping Ai,et al.  High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. , 2012, Chemical communications.

[288]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[289]  Shinichi Komaba,et al.  Study on the reversible electrode reaction of Na(1-x)Ni(0.5)Mn(0.5)O2 for a rechargeable sodium-ion battery. , 2012, Inorganic chemistry.

[290]  Qian Sun,et al.  Electrochemical properties of room temperature sodium-air batteries with non-aqueous electrolyte , 2012 .

[291]  Atsushi Sakuda,et al.  Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries , 2012, Nature Communications.

[292]  Huilin Pan,et al.  Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries , 2012 .

[293]  C. Aparicio,et al.  Thermal decomposition of Prussian blue under inert atmosphere , 2012, Journal of Thermal Analysis and Calorimetry.

[294]  Wataru Murata,et al.  Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. , 2011, ACS applied materials & interfaces.

[295]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[296]  Jean-Marie Tarascon,et al.  Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .

[297]  Diana Golodnitsky,et al.  Parameter analysis of a practical lithium- and sodium-air electric vehicle battery , 2011 .

[298]  R M Shelby,et al.  Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. , 2011, The journal of physical chemistry letters.

[299]  P. He,et al.  Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. , 2010, Nature chemistry.

[300]  Philippe Moreau,et al.  Structure and Stability of Sodium Intercalated Phases in Olivine FePO4 , 2010 .

[301]  Ji-Guang Zhang,et al.  Air electrode design for sustained high power operation of Li/air batteries , 2009 .

[302]  A. Remhof,et al.  Rotational Diffusion in NaBH4 , 2009 .

[303]  H. Morito,et al.  Na–Si binary phase diagram and solution growth of silicon crystals , 2009 .

[304]  Yuriy V. Mikhaylik,et al.  Polysulfide Shuttle Study in the Li/S Battery System , 2004 .

[305]  Robin D. Rogers,et al.  Ionic Liquids--Solvents of the Future? , 2003, Science.

[306]  Denis Billaud,et al.  Electrochemical insertion of sodium into hard carbons , 2002 .

[307]  E. Yasukawa,et al.  Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries: I. Fundamental Properties , 2001 .

[308]  Y. Nishi The development of lithium ion secondary batteries. , 2001 .

[309]  Arthur D. Pelton,et al.  The Na-S (Sodium-Sulfur) System , 1997 .

[310]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[311]  Tao Zheng,et al.  Mechanisms for Lithium Insertion in Carbonaceous Materials , 1995, Science.

[312]  H. Okamoto The Li-S (lithium-sulfur) system , 1995 .

[313]  J. Gopalakrishnan,et al.  Vanadium phosphate (V2(PO4)3): a novel NASICO N-type vanadium phosphate synthesized by oxidative deintercalation of sodium from sodium vanadium phosphate (Na3V2(PO4)3) , 1992 .

[314]  M. Jansen,et al.  Synthesis, structure determination, and ionic conductivity of sodium tetrathiophosphate , 1992 .

[315]  A. Sammells,et al.  A Lithium Oxygen Secondary Battery , 1987 .

[316]  T. Jacobsen,et al.  A rechargeable all-solid-state sodium cell with polymer electrolyte , 1985 .

[317]  J. Murray The Al−Na (Aluminum-Sodium) system , 1983 .

[318]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .

[319]  C. Delmas,et al.  A NEW FAMILY OF PHOSPHATES WITH THE FORMULA NA3M2(PO4)3 (M = TI, V, CR, FE) , 1979 .

[320]  D. Schwarzenbach,et al.  The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3.xH2O , 1977 .

[321]  H. Hong,et al.  Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12☆ , 1976 .

[322]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[323]  J. Jorné,et al.  Electrodeposition of the alkali metals from propylene carbonate , 1975 .

[324]  M. Iida,et al.  Past , 1971, PS: Political Science & Politics.

[325]  Kazutaka Suzuki,et al.  On the Structures of Alkali Polyaluminates , 1968 .

[326]  J. Kummer,et al.  A Sodium-Sulfur Secondary Battery , 1967 .

[327]  R. Franklin Crystallite growth in graphitizing and non-graphitizing carbons , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[328]  R. Franklin The structure of graphitic carbons , 1951 .

[329]  H. Lipson Crystal Structures , 1949, Nature.